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Abstract

In [12] the authors introduced planar approximations in their study of
separately continuous functions / :[0,1]x [0, 1] - R. In Section 2 of
this paper we show how, when dealing with continuity in the ordinary
sense, the convergence which was pointwise for separately continuous
functions, becomes uniform. In Section 3, we look at sequences of planar
approximable functions and their limits under various notions of
convergence.

1. Introduction

For a function f:[0, 1]x [0, 1] > R, the function f, : [0, 1] - R, given
by fo(»)=f(x,y), where x is fixed is called an x-section of /. Similarly we
can define the y-section of f. A function f :[0,1]x [0, 1] > R is called

separately continuous if each x-section and y-section is a continuous
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function. This is not the same as continuity in the ordinary sense
(referred to as joint continuity) with the first counterexample appearing
in the literature in 1873. This example is

f(x, y) = }% (x, ) = (0, 0)

0 (x, ¥) = (0, 0).

In [12], the above authors studied separately continuous functions, with
one result involving planar approximations (which are defined below) of a
separately continuous f. In that paper we showed that if / is separately
continuous, then the planar approximations converge pointwise to f. We
also gave examples showing that some, but not all, Baire class one
functions are planar approximable, and that there are symmetrically
quasi-continuous functions [10] which are not planar approximable.

We begin by defining these approximations.
Let f :[0, 1]x [0, 1] - R. We define P,(x, y), the planar approxima-
tions to [ as follows: for n = 0, we start with the unit square and divide it

into two triangles by splitting it along the diagonal joining (1, 0) and
(0, 1). So our first triangle has corners (0, 0), (1, 0), and (0, 1) while the

second triangle has corners (1, 0), (0, 1), and (1, 1). For each triangle, we
find the image of the corner points and, using the triples (x, y, f(x, ¥)),

we create a planar region through these triples. Adjoining the two planar
regions, we obtain our first planar approximation, Py(x, ).

At stage n, divide the unit square into 2" subsquares of side length
1/2". Then divide each square into two triangles for a total of gt
triangles. So each triangle has vertices (v, y) (xg, ¥2), and (x3, y3)

and we use (x;, ¥;, f(x;, ) ¢ =1, 2, 3 to create a section of a plane in

R3. Joining these sections together give P,(x, y), where for a given
(x, ¥), P,(x, y) is the z-value of the plane section above that point. Let
T, denote all the corner points for the triangles at state n and let

T =UT,. We note here that for k <n we have T, c T,, for a fixed
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(x, ) the set of corners used in approximating [(x, y) converges to
(x, y), and if (x, y) € T}, then P,(x, y) = f(x, y) for n > k.

2. Continuous Functions and Planar Approximations

The purpose of this note is to further delineate between separately
and jointly continuous functions by looking at them in terms of these
planar approximations. We shall show that for jointly continuous
functions the approximations actually converge uniformly and give an
example of a separately continuous function where the convergence must
be pointwise,

Theorem 1. If [ :[0,1]x [0, 1] > R is continuous, then the planar

approximations P, converge uniformly to f.

Proof. Since [0, 1]x [0, 1] is compact, the function f is actually
uniformly continuous. Thus for a given € > 0 there exists a & > 0 such
that d((xy, ). (x2, ¥2)) < & implies | f(x1, 31) = f(xa, ¥9)| < &/5, where d
is the Euclidean metric on the unit square. Now pick N € N such that

[,‘é— < 8. Then for every (x, y)e [0, 1]x[0, 1] the image of the corner
21

points in T which form the plane to approximate f(x, y) are within g
5
of f(x, ¥). So we have
£
[ f(x, ¥) - Py(x, y)| < 5

However, this N is fixed. Notice that for this fixed N and for each
planar section, the image of the corners which form the section are at

most % apart leading us to | Py(xy, 3) - Py(xp, ¥2)| < % for any
(x1, 1) and (x, ¥9) in the triangle which defines the planar section.

To get our result, we again refer to the uniform continuity of /. Then

for n,m 2 N we know | P,(x, y) - £, (x, )| < 2—; since the points that

form both P, and P, above (x, y) are within % of f(x, y). So letting
D

.
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(x, ¥) € [0, 1]x [0, 1] and letting (a, b) € Ty be a corner used in finding
Py (x, y) we have for n > N

| f(x, ) = Py(x, ¥)| <| f(x, ¥) - fla, b)| + | Py(a, b) - Py(x, y)|
+| Py(x, 3) = Py(x, ¥)|

s, 2% 2%

55 5

Since, (x, y) was arbitrary we have shown the uniform convergence of
the P,. g

As the following example shows, this is not true for functions that are
separately continuous, but not jointly continuous. The F below is planar

approximable (since it is separately continuous), but the convergence of

the P, is pointwise.

Example 1. Let F : [0, 1]x [0, 1] - R be given by

x=y x>0
x+y
= B 0<x<y
F(z, y) = {25 -
—'LZ 0<y<x
2x
0 (x, ¥) = (0, 0).

3. Convergence of Planar Approximable Functions

The main question is this: If {f,} is a sequence of planar

approximable functions from [0, 1]2 into R and f, converges with
respect to some type of non-standard convergence to some function f, then

is f also planar approximable?
3.1. Convergence on dense sets

We say that a sequence f, of functions from [0, 1]2 into R converges

on a dense set to f, when
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f(x, y) e [0, 1P : fulx, ¥) > f(x, y)} is dense in [0, 1]°.

So, does every sequence f, of planar approximable functions

converge on a dense set to a planar approximable function? The answer is

no.

In fact, pick (xg, yo) which is not a corner point (not in the set 7) and

let {(x,, ¥,)} be a sequence in 7'which converges to (xy, yo). Let

In(%, ¥) = A(xy, y) (& ¥)
and
G, ) = X(xg, yo) (%5 2).
Each f, is planar approximable, f, converges to f on a dense set, yet fis
not planar approximable.
3.2. Continuous convergence

We say f, converges continuously to f if for all x, and all sequences

{x,, | which converges to x;, we have

frt(xn ) - f(xO )

This condition has a long history in mathematical literature. Actually,
Sierpinski [14] refers to the following theorem as

Kuratowski Theorem. Let X be a compact metric space. A
necessary and sufficient condition for a sequence {f,} of continuous
functions converges uniformly to f is that for every point x, in X and any

sequence x, in Xsuch that limx, = xj implies lim f,(x,) = f(xy).

We will prove now that continuous convergence preserves planar
approximable functions.

Let € >0 and P, be a planar approximation of f. For any point
(x, y) there is a sequence of triangles whose closure contains (x, y)
which are decreasing down to the point. Make three sequences {(s,,, ¢, )},

{(sn, ty)}, and {(sy,, )}, where these are the corners of the n-th triangle.
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From the definition, there is an N such that n > N implies f, s s
fulsh, ty), and f,(s), t) are /4 close to f(x, y). Ina similar vein, if n is

large enough

qu(sn.’ tn) - f(sm t,,)l <

o

This means that the corners that make up the triangle have P,(x, y) at

&
most 2 - 2 away from any corner. Thus

IA

l Pn(x’ y) - f(x, J’)I ‘Pn(x» ¥) - fu(snv 'f‘n‘)l + 1 (s t‘u) - flx- y)l

IA
bo |,

£
+—<E
4

Hence fis planar approximable.

We note here that our proof works for any domain D ¢ R xR, but
that there is simpler reasoning for the unit square. If the domain is a
compact set, then continuous convergence for a sequence of functions is
equivalent to uniform convergence, see Kuratowski's theorem above.

Now, because x, = x is a sequence converging to x continuous
convergence implies pointwise convergence. [t does not work the other

way around. If

/n x=0

gn(x) =
1 x =0,

then g, converges pointwise to ¥}, but does not converge to it

continuously. So if we can get our result working with pointwise
convergence this would imply the continuous convergence result.
However, that's not going to work. That is,

There is f, each of which is planar approximable with f, — f

pointwise, but f is not planar approximable.

Pick a point (xg, ¥p) ¢ T and let {r,} be the sequence of the closed

triangles (including the interior, not just the sides) converging down to
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(xg. ¥o). Define f, by

1/n (x, y) € Ty
fallz, ¥)) = .

(x, ¥) € Ty

This is really just a variation on the example above it. The limit is not

planar approximable because P, =0 (see discrete convergence).

3.3. Almost uniform convergence

For the basic results and definitions (see [4], [8). It is well known
that a sequence of monotonic functions defined on an open interval I
converges to a continuous function f, then the sequence converges almost
uniformly to f; that is, it converges uniformly to f on any compact subset
K of 1. In our situation, the role of I is the open unit square. The only
place this can “mess up” is on the boundary. Pick a point x s0 that (0, x)

is not in T. Then there are points t, < X < Sy, where s,,t, > X and

(0’ sn.)! (0- tn) € T IJEt

0 otherwise.

1 (v y) e (0 x[ta, sal
f"(-"l-'. _'}")=

Each f, is planar approximable, f, converges to %(o,x) pointwise (and in
a decreasing fashion), and, in the interior of the unit square, f, =0 so0
f, converges 1o f almost uniformly. The limit f is not planar

approximable gince f is zero at every point in T'.
3.4. Graph convergence

Let us look at the following classical result, see [7] or ([16] where this
result is repeated):

Theorem. Let X and Y be compact metric spaces. Let fi, fo, - be
functions from X to Y with graphs r(f) T(f2) - in XxY. Then
lim ['(f,,) exists and is the graph of a function f if and only if f, converges

to fand fis continuous.
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It is the “if” condition, in terms of the sequence of the graphs I'(f,)

that provides the definition of graph convergence of a sequence of
functions.

We shall now prove that graph convergence preserves planar
approximability.

In fact, let &€ > 0 and pick an arbitrary point (x, y). For this & there
exists a positive integer N such that if n > N the open ball about I'(f)
with radius &/3 (in the sup norm). Fix such an f,. This f, is planar
approximable so we know that P, ,, converges pointwise to f,. Thus

there exists an M > N so that for m > M
an,m(x: y) - fn (x. J’)I < 8/3.

Since all the points in f,, are within &/3 of f, the three corners which
make the triangle containing (x, y) have their images under f, within

/3 of their images under /. Hence the planar approximations P, , and

P,, of the triangle using f,, and f are &/3 close for every point in the

triangle. Thus
| P, 3) = £, 9)| < | P, 3) = By, 9)|+ | Bo,m (%, ) = fu(x, 9)]
+| fulx, ¥) = flx, 9)]
<g/3+8/3+¢/3 =c¢
So P, converges pointwise to f which means fis planar approximable.

3.5. Quasi-normal convergence

Let fi, fo, ... be real-valued functions defined on a set X. We say that
the sequence {f,} converges quasi-normally to f on X, if there is a
sequence {g, | of nonnegative reals converging to zero such that for every

x € X there is an index &, such that

| fu(x) = f(x)] < €, forevery n = k.

The studies of quasi-normal convergence were initiated by Csaszar and
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Laczkovich [2, 3]. We shall prove that quasi-normal convergence does not
preserve planar approximability. In fact, let (xg, ¥9) be a point not in 7.

For this point (x, ¥5) and at each step n, there is a triangle with corners
(sns ), (s, ), and (sp, t),) containing (xg. Yo) in its interior. Define
fu as 1 in the closure of this triangle and 0 elsewhere. This f is
obviously planar approximable and converges quasi-normally  to
= X(xg, yo) (after step n everything outside of the triangle agrees with
its f value and f(xg, yo) = f,(x¢, o) =1 always). However, [ is not

planar approximable.
3.6. Discrete convergence

A variation of the above example also works for discrete convergence.
Recall that a sequence f, : R —» R discretely converges to the limit f (see
[2, 3]) if

Va3n (x) Vo > n(x) £,(x) = f(x).

This is between pointwise and uniform convergence. Pick (xp, ¥0)e T and
let
1 (x5 er,

fullx, ¥) =
0 (x,yer,,

where 1, is the triangle at stage n that contains (xg. »0)- This converges

discretely to y(x, )} Which is not planar approximable.

The studies of discrete convergence were initiated by Csaszar and
Laczkovich [2, 3]. For other types of convergence, such as quasi-uniform
convergence, see [1, p. 406], [6], [13], and [9, p. 255].

Lastly, we wish to end this paper with an open question. The question
is not new, having appeared in our previous paper, but is still
unanswered.

Problem 3. Does there exist a complete description of the functions
which can be approximated pointwise by these 2,2
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