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Abstract. Some new types of Closed Graph Theorem are presented.

These results generalize some theorems of T. Byczkowski, R. Pol and

M. Wilhelm. An answer to a problem of M. Wilhelm 1is provided.
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Introduction. We say that a function f from a space X into a space Y

has a closed graph if the graph of therfunction £, i.e. the set

((x.y)EXxY : y = £(x)}, is a closed subset of the product XxY. It is
well known that any continuous function £ from a space X into a Hausdorff
space Y has a closed graph. S. Banach [2 ] showed that any closed graph
linear operator between any two Banach spaces is continuous. It transpires
that the lack of linearity of f may be compensated by a near continuity in
topological caée.

Consider the following statement concerning the continuity of a function £

(*) 1f £ is a nearly continuous closed graph function from a Hausdorff
space X into a Cech-complete spéce Y then £ is continuous.

It turas out that (*) holds if either one of the following conditions
is true:

(a) X is metric, Cech-complete and Y is metric, see {6 1]

(b) £ is compact, i.e. inverse images of compact sets are compact,

see [ 3 ]

(c) f has a A-closed graph, (71

In this paper we shall establish new types of Closed Graph Theorem. For
this we introduce and consider what we call the s;parating function.

Qur results generalize the previously menti?ned theorems of T. Byczkowski
and R. Pol [ 3] and M. Wilhelm t 71, as wéll as allowing us to answer

in the negative, the problem of M. Wilhelm [ 8 ]. Finally a Blumberg type

theorem for separating functions is obtained. .
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1. Basic facts: We shall start by formulating and proving some

facts concerning closed graph functions. We do this for two reasons:
first, we will use them frequently in the sequel, and secondly we have
not been able to find these results in just the form we needed. The in-

terested reader may consult the survey paper (al.

Theorem 1. Let £ be a function from a space X into a space Y. Then
the following conditions are equivalent.

(a) f has a closed .gra’ph;

(b) if xeX, yeYand y + £(x), then there exists an open neigh-
borhood U of x and there exists an open neighborhood V of y such that
EQWN V=95

(c) if K is a compact subset of X, then £(K) = {cl £(U): U is

an open neighborhood of K};

- -1
(d) 1if C is a compact subset of Y, then £ l(C) ={cl £ "(V): V

is an open neighborhood of Cl.

Proof: (a)++ (b) is trivial, and follous immediately from the def-~
inition of the product topology. Note that (b) can be rewritten in the
following forms: {£(x)} = N{cl £(U): U is an open neighborhood of x} f‘or each
xe X; or f—l(y) =N{cl £ 1(w): v is an open neighborhood of y} for each

ye€Y. Since compact sets "pehave" like points, we obtain (b) ** (c) and

(») (1.0 .

Corollary 1. Let f: X~+¥ have a closed graph. Then

(a) 1if K is a compact subset of X, then E(K.)' is closed;
(b) if C is a compact subset of Y, then f-'l(c) is closed;
(¢) 1f K is a compact subset of X, C is a compact subset of Y and

f£(K) N C = P, then there is an open neighborhood U of K and an open neighbor-

hood V of C spch that ¢l f_l(V) AuUu=90=vncl £(U).
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Proof: For (a) use (c) from Theorem 1; for (b) use (d) from

Theorem l: for (¢) use both (c) and (d) from Theorem 1.0

Corollary 2. Let f£: X~Y have a closed graph.

(a) 1I1f X is cowpact, then f is a closed function

(b) If Y is compact, then f is a continuous function.

Prdof: Because closed subsets of a compact space are compact, the
result follows immediately from Corollary 1. a

A function f: X+Y is said to be continuous dat a point x€X if for every
open set V<Y containing £(x) there exists in X 2 neighborhood U of x such
that £(U)< V.

A function f: X*Y is said to be closed at a point y€Y if for every

open set U< X which contains f-l(y) there exists in Y a neighborhood V of y
such that f_l(V) c U. This is the same as saying that y‘*f-l(y) is an

upper semicontinuous map.

Corollary@. Let £: X+Y have a closed graph.

(a) 1If X is locally compact, then the set CI..c (£) = {ye¥: £ 1is
closed at y and f-l(y) is compac:} is an open subéet of Y.

(b) If Y is locally compact, then the ';et c(f) = {xeX: £ is
continuous at x} is an open subset of X. Moreover, if Y is re'gular, then

the set D(f) of points of discontinuity of £ can be covered by W(Y) or less

nowhere dense closed subsets of X.

Proof: (a) Let yeCLc(f). Since X is locally compact and f-l(y)
{s compact, there exists an open neighborhood U of E-lgy) such that cl U is
compact. Since f is closed at ¥, there exists in Y an open neighborhood
V of y such that f-l(V)cU. We shall show that V< CLC(E). Let ve V. Then,

- . -1 .
by virtue of Corollary 1 (b), £ 1(v) is closed in X. Since £ “(v) is a
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subset o[ the compact space cl U, it has to be compact. We have to show

also that f is closed at v. So let W be an open neighborhood of £ l(V).
Since E_L(v) {s contained in U we may assume that W is contained in U,
as well. The restriction of £ to cl U, flcl u, is a function from cl U to
Y and has a closed graph. Since the doﬁain of this function is a compact

space, it is a closed function by Corollary 2 (a).

Thus it is closed at any point of the space y. Hence there exists an

open neighborhood G of v such that (Elcl U)_l(G) c W. We may assume that

GeV (by taking GNV if needed). But then (Flel U)—l(G) = f-l(G) and we

are done.
(b) Let xeC(£). Let V be an open neighborhood of E(x) such

that cl V is compact. Then there exists an open neighborhood U of X such

that Ue £L(V). We shall show that Us C(E).

E|U goes from U to the compact space cl V and has a closed graph. Therefore,

it is a continuous function by virtue of Corollary 2 (b). Since U< f-l(V)

and U, V are open, the continuity of the function £|U means the same as the

continuity of f. Hence f is continuous at each point of U, SO ueC(f).

To prove the second part of (b), take a base B in Y such that lBl‘= w(Y)

and cl V is compact for each VE B.'.Bec;use f has a closed graph, for each

veB the set f-l(cl v) - int f—l(cl V) is closed and nowhere dense in X,
(use (b) of Corollary 1). But trivially, each point of D(f) lies in some such

set and we are done.[]

Example. Let i denote the identity function from the unit interval

"1 onto itself and let i denote the same interval with the discrete topology

The functions 1 @ i+I and L 1+1 have the closed graphs (use, for

example, the arguments from Lemma 1 (b), (e))- The first of these acts on

a locally compact space I (to the metric compact space 1), but CLc(i) = 0;
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the second (iicts on a compact metric space and) takes the values in a
locally compact space I but C(i) = . These examples show that one cannot
guess CL_([) 1 9 + C(E) in Corollary 3. lowever from the second part of

(b) in Corollary 3, one can deduce that for any closed graph function from

a space satisfying the Baire Category Theorem into a regular locally compact

space with countable base, the set of points of continuity of such a function

alvays contains a dense open subset. Moreover, any closed nowhere dense

subset of reals can be the set of points of discontinuity of a real closed

graph function [see for example (13 1.

The next theorem indicates where the failure of discontinuity of a

closed graph function lies.
A space X is said to be a k-space if for each Ac X, the set A is closed

in X provided that the intersection of A with any compact subspace Z of the

space X is closed in Z.

The class of k-spaces is quite wide. It contains for example all

Cech-complete spaces as well as all first countable spaces.

Theorem 4. Let £: X—+Y have closed graph.

(a) 1f Y is a k-space and f-l(C) is compact whenever C is a compact

subspace of Y, then £ is a closed function.

(L) If X is a k-space, then f is a continuous function if and only

if £(K) ls compact whenever K is a compact subspace of X.

Proof (a): Let E be a closed subset of X and let C be a compact

subspace of Y. Then the set E(TE-l(C) js a closed subset of the compact

- -1
space f l(C) and therefore 1is compact. By Corollary 1 (a), E(ENE “(C))
is a closed subset of Y. But E(E(WE_l(C)) = £(E)NC, so £(E)NC is also a

closed subset of C. Since Y is a k-space, £(E) is a closed subset of the

space Y.
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(b) Only the "if" part needs proof. So let F be a closed
subset of the space Y and let K be a compact subspace of the space X.
Then the set FNE(K) is a closed subset of the compact subspéce £(K) and
therefore is compact. By Corollary 1 (b), E_l(Fﬁ £(K)) is a closed

subset of X and therefore KN f-l(Fﬁ £(R)) is a closed subset of the space K.

Buc KAEET(FNEEX)) = cnetEn etEE) = gAe l(F). Hence kne e

is closed in K. Since X is a k-space, f_l(l-') jg a closed subset of the
space X. O
We have seen that compactness guarantees continuity of closed graph

functions. Some other topological properties can do the same.

Theorem 5. If £:X+Y has the closed graph where X is a Fréchet space

and ¥ is a countably compact Space, then f is continuous.

proof. Assume to the contrary that theré exists a point peX and
an open neighborhood vV of £(p) such that (FQU) - V + ¢ whenever U ig an open
neighborhood of p. Let F = Y - V.. Then p € ¢l f-l(F) - f_l(F)é Since X
{s a Fréchet space, there ;axist:s a sequence {xn} of points of the set f_'l(F)
converging to p. Because F is a closed subset of a countably compact
space Y and the sequenceA {f(xn)} is contained in F,. there exists a point
g € F such that g € E whenever E is a closed subset of Y containing all
but finitely many members of the sequence {f(xn)}. Hence gecl £(U)
for each open neighborhood U of p. In consequence, gen {c1 £(U): U is an
open neighborhood of p}. However .this is impossible in view of Theorem'

1 (c).D

2. Separating functions. In this section we will attempt to find

additional properties of spaces and functions that will guarantee the contin-

uity of closed graph functions. For this purpose we distinguish a class of

functions, which is a strenghtened version of closed graph functions, namely
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the class of separating Eunctions which we define as follows.

We say that a function £ from a space X into a space Y 1s separating
{f it satisfies the following condition:

(*) any two distinet points u, veY there correspond respective open
neighborhouds U and V such that the sets f—l(U), f-l(V) are separated, i.e.,
elaynel £ =8 =cl £ Lyyn et

The fact that each separating function has a closed graph may be
obtalned immediately by using Theorem 1, (b). Let us note some other

immediate facts about separating functions.

Lemma l. If £ @ £+Y is separating, then £(X) is 23 Hausdorff

subspace of Y. a

Lemma 2. If £ is a continuous function from a space X into 2
Hausdorff space Y, then f is separating.[]

Lemma 3. If £ : X*Y is separatiﬁg and Kl’KZ are disjoint compact
subspaces of Y, then there exist open sets U and v such that K€ U, ch‘f
and f_l(U), f-l(V) are separated.cj

Lemma 4. If £ : X*¥ is separating, AcX, BcY and £(A)c B, then
£|A : ATB is separating.[] d

Lemma 5. ILE £ : x+Y is separating, then any extension of the

topology on either X or Y does not destroy the separativity of £. 0

The last lemma permits the construction of separating functions that
are not contxnuous. One can also easily obtain closed graph functlons

which are not separating. However we postpone glving an appropriate

example until after our considerations concernlng the dependence of separating

- P

functions on other classes of functions, e.8-» A—closed graph functlons

or nearly continuous functions.
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Following M. Wilhelm [7], we say that a function f from a space X
into a space Y has a A-closed grach if the following condition is satisfied:

(8) if a net {(no, vo)} of points of X * X converges to the diagonal
A.\' and the net {(f(uc), f(vo))} converges to a point (w,z), then w = z.

Let us recall that a net {ad} converges to a set A if for amy open

set U containing A  there is a J, such that x €U for allc > 9"

Lemma 6. If £ : X*Y has a O-closed graph, then it is separating.

Proof. Assume that the function f is not separating. There are
different points w, z€Y such that f-l(W), f-l(Z) are not separated for each
pair W, Z of open neighborhoods of points w, 2z, respectively. 1If so, then
we may assume that f_l(w)ﬂ cl f_l(Z) + § for each pair W, Z of open neigh-
borhoofis of points w, z, respef._:tively. Now we shall define a net (uo, Vo)
of points of X X X. An index 0 is an ordered ﬁriple (W,Z,D), where W is

an open neighborhood of the point W, Z is an open neighborhood of the point

z and D is an open neighborhood of the diagonal AX' 1f g =(W,2,D) and

o' = (W', Z', D'), then we set ¢ < ¢' 1ff W'e W, 2'<cZ and D'e D. For
g = (W,Z2,D) we choose (uo,, vo) to be a point from X X X such that E(uc) EW,
f(vc) € Z and (uc,vo) €D. This is possible for the following reasoun:

- - - -1
since £ l(W)ncl £ l(Z) 4 P there is a u belonging to £ 1(W)ﬂcl £ 7(2).

-1
Let G be an open neighborhood of u such that G x GeD. Since uecl £ 7(2),

GN f-l(Z) { p. Hence there is a v belonging to Gﬂf-l(z). It suffices to

put u, = u and Vg = V-

The net {(uc,vo)} converges to the diagonal Ax and the net {(E(uo),

f(vc)} converges to the point (w,z).

Indeed, 1if D, is an open neighborhood of AX’ then let 00 = (Y,Y,DO)-

0
Then for any ¢ = (W,Z,D) such that % <gwe have, in particular, D< D0 S

and hence (uo,vc) eDc DO'

o e e

cavnr e g ———

e T e VT I TTE PSS T
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If il is an open neighborhood of the point (w,z), then there are open
. X =
neighborhoods NO of w and Zo of z such that (W0 Zo)ciL Let 0,
W

YA X X X). Then for any O = (W,2,D) such that dO'i o we have, in

o’ "o’ °
i w X W X .
particular, Wc wo and z:zo and hence (E(uo), f(vo)) € Zc o Zoc: H

Because w * 2z, the condition (4) is not satisfied and hence £ does

not have the A-closed graph.d

Example. There exists a separating function from a completely
regular space onto a O-dimensional regular paracompact space Y that does
not have a A-closed graph.

Let X be the topological space with underlying set (-1,1) X (0,1)U
(-1,0] x {1} U [0,1) x {0} and the topology defined in the following way:

Any point (x,y) such that x ¥ 0 has the base of neighborhoods inher-
ited from the product topology for [-1,1] x {0,1]. Any point (0,y) such
that O + y + 1 has the base of neighborhoods éonsisting of sets of the
form K- U{(0,y)} U Kf, Qhere K~ is the set of all points of (-1,0] x (0,1)
inside a circle that is tangent to {o} x (0,1) at y, and K" is the set
of all points of [0,1) X (0,1) inside a circle that is tangeng to {0} x (0,1)
at y. Finally, the points (0,1) and (0,0) have thg'base of neighborhoods
consisting of sets k- U{(¢0,1)} and {(0,0)} U K%, réspectively. Clearly X
is completély regular (compare with the proof that Niemytzki's plane is
completely regular [51).

The space Y is formed from X by collapsing the sets (-1,0] x {1} and
(0,1) x {0} toiaistinct points Cl’ Co respectively.

The topology on Y is a base in the following way: each ngnr;ollapsedl

point is isolated; a base of neighborhoods for C1 consists of sets of the

form {c }U ((-1,00 * (0,1) - (el K U...Uel K ). where cl K 1is a

closed circle of the type K ; similarly, a basgﬁ,oflneighborhoods for Co
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conSLQCS of sets of the form [CO}LJ((O,I) x (0,1) - (cl K;LJ...‘J cl K:)).
Observe that Y satisfies "good" separation axioms: it is for example
O-dimensionial and paracompact.

Mow, let f be the quotient function from X onto Y. We shall show
that this function is separating but it does not have a A-closed graph.

In order to see that f is separating 1t i{s enough to check that the

two "suspect' points Cl’ C. have separated preimages under f of their

0
nelghborhoods [Cl}\J(—l,O) x (0,1) and {CO}U (0,1) x (0,1). So we pass

to the proof that f does not have a A-closed graph. Let @ be an ordered
triple (W,Z,D) where W is an open neighborhood of C;» 7 is an open neigh-
borhood of C, and D is an open neighborhood of the diagonal Ax . As
usual, the order for g's is the inclusion between the corresponding mem—
bers of the triples. Now for any such 0 we shall define an ordered pair
(uo,vo). tamely, if 0 = (W,Z, D) and G = {C } U ((-1,0) x (0,1) -

(el K{U...Uecl K))) and i = (o) U (1,0 % (0,1) = (el U...U el K
are basic neighborhoods of_Cl, C0 contained in W, Z, respectively, then
let (0,y) be any point of {0} x (0,1) not belongiﬁg to the set cl KILJ...LJ
zl K “Uecl K tu...Uel K . Let U be any open neighbqrhood of the point
(0,y) such that U X U eD. Then GNU + p $ HAU and 1t is enough to put
u, € GNU aund voe HNU. Clearly, the net {(uo,vo)} converges to the

diagonal A‘ and the net {(f(uo), f(vo)} converges to the point (cl’CO)'

Since C; ¥ Co» f does not have a A-closed graph.[]

Lemma 7. Let Y be a k- space T £ ¢+ XTY has a closed graph and

preimages under £ of compact subsets of Y are compact, then £ is sepatating.'

proof. Let u,v be arbitrary different points of»Y. Applying

Corollary 1 (c) to the compact sets {ul, f-l(v) and {v}, € (U) we obtain
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open neighborhoods U', V' of the points u and v. respectively, such that
artanNelw 9= lwnea £ .

By virtue of Theorem 4 (a), £ is a closed function. Hence U = U'N(Y-E(cl f‘l(V')))
is an open neighborhood of u and V = V' N (Y-£(cl f—l(U'))) is an open
neighborhood of v and the sets f-l(U), f_l(V) are separated.[]
A function f : X*Y is said to be neagly continuous if f_l(V)c int cl E—l(V)
for every open set VeY.
Near continuity brings continuity to closed graph functions in the
absence of compactness. For example, one can easily observe that any
closed graph nearly continuous function into a regular locally compact
space is continuous (compare with Corollary 3 (b) and Example). Moreover,
T. Byczkowski and R. Pol [3]vhave shown that closed graph nearly contin—-
Qous functions preserving coﬁpact gets under preimages are continuods |
whonever their range is a Cech-complete space; M. Wilhelm [7] came to

the same conclusion assuming &-graph closedness and near continuity. We

now have the following.

Theorem 8. If £ : X*Y is a separating nearly continuous function

I

into a locally Eech—complete space Y, then £ is continuous.

P:oof. Assume, to the contrary, that there exists a point peX
and an open neighborhood ¥ of £(p) such that £y -V + § whenever U is
an open neighborhood of p. Let G be an open neighborhood of £(p) such

that ci GeV and G is a Eech—compléte subspace of Y. Since £ is nearly

continuous, the inverse image f-l(Y—cl G) of the open”set-¥-cL G is conf

tained in int cl f-l(Y-cl G) and hence it follows that f-l(Y-cl G) N

el £71©) + 9. Let g be any point from £ L(¥-cl G)Necl f-l(G)- There .. -
exists an open neighborhood H of £(g) such that cl HeY-cl G, and H is a .
Cech-complete subspace of Y. Let {An} and {Bn} be countable families of

~ open covers of G and H,‘respectively, which

(R S
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satisfy the conditions for G and H to be Cech-complete. Now choose a set

H. which is an open neighborhood of £(g) such that cl ch B for some BE:Bl-

1

- -1 -1
Ihen el l(lxl) {s a neighborhood of g, and therefore cl £ ~(H;)NE 7(G) R

Let y be any point from cl E-l(ul)fTE-l(G). Now choose a set G1 which 1is an

-1
open neighborhocod of £(y) such that cl G, ¢ A for some AE:Al- Then cl £ (Gl)

- -1 s
is a neighborhood of Y, and therefore £ l(Hl)f]cl £ (Gl) + #. Continuing

the following

this process, one can find two sequences {Gn} and {Hn} satisfying

conditions:

(1) cl Gn+ e Gn and cl Hn+1c Hn for each n;

1

(2) el Cn has diameter less than An and cl Hn has diameter less

than Bn’ for each n;
-1 -1
(3) £ )Nel £(6) $ p for each n.

The first two conditions guarantee that the sets Kl =f7{cl Gn: n=.1,2,...}
and Ky =MN{cl Hn :n=1,2,...} are nonempty:compact subsets of the space Y
and that the families {Gn}‘and {Hn} constitute open bases around these sets,
respectively. Since ch G, and ch He Y - ¢l G, the sets Kl’ KZ are disjoint.
By virtue of Lemma 3, there are open sets U and V such that ch-U, KZCIV and
f-l(U), f-l(V) are separated. Since {Gn}, {Hn} are decreasing bases around
Kl’ Kz, respectively, there is an index K such thgévGKclland HKC‘L But
then f-l(nK)r\cl f—l(GK) = @, contradicting (3).0]

OQur result, the proof of which is based on an idea due to Byczkowski-
Pol [ 3], constitutes a common generalization of the previously mentioned
results by Byczkowski-Pol and ﬁilhelm (see Lemmas 6 and 7). It also allows
us to answer a question posed by M. Wilhelm [8]:  will a space Y necessar-
ily be Eech—complete 1f every nearly continuous A-closed ‘graph Euncti&n from
any lausdorff space X into Y is contiﬁuous? The answer is ""no". Any loc-

ally Cech-complete but not Eech-complete space gives a negative ansuer, by

virtue of our Theorem 8, and such spaces are known to exist (see for example
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b d
[ 5; p. 297 1). Note also that anmy non-continuous function into a Cech~-

_completé space that is nearly continuous and has a closed graph is an

example of a closed non-separating function. Such a function was con-

scructed in [3].

A regular space X is said to be of pointwise countable type if, for

every point x €X, there exists a compact set Ce X such that xeC, and

there exists a countable base of open neighborhoods of C. It is known

(5] that any Cech-complete space is a space of pointwise countable type

and that those spaces are k-space.
Theorem 9. If £ : X7Y is a nearly continuous separating function

into a countably compact space of pointwise countable type, then f is

continuous.

Proof. Assume, to the contrary, that there exists a point pE€X

and an open neighborhood ¥ of £(p) such that £(U) - V % 9 whenever U is

an open neighborhood of p. Let C be a compact subset of Y containing £(p)

such that there is a countable base, say {Vn}, of open neighborhoods of C.

Without loss of generality we may assume that Ce V and that {Vn}is a

decreasing base. Since .f is nearly continuous, the sets cl f-l(Vn) are

‘open neighborhoods of p. Hence int el f-l(Vn)nf-l(Y—.{') 1 9 for each n.

Let x € int cl f-l(Vn)n f-.l (Y-V). Since Y is countably compact and Y-V

is a closed subset of Y, there is. a point gEY-V, which is an ac;umulation

point of the sequence {f(xn)}. The compact sets {g} and C are disjoint,

and therefore there are open sets U and V such that g€U, CeV and the

sets f_l(U), f-l(V) are separated. Let us take v, such that V < V. Then

E-r'l(U)n cl f-l(Vn) = f. However the set cl f_l(Vn) contains all but

-1 .
finitely many elements of the sequence {xu}, and the set f ~(U) contains

infinitely many elements of the sequence {xu}. Hence f-l(U)n cl fm]'(Vﬂ)=ll B,

‘a contradiction. a
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Corollary 10. Let £: X7Y be a separating function into a regular

second countable space Y. If Y is also either locally Cech-complete OT
countably compact, then there exists 2 residual subspace 7Z of X such that

Elz : Z+Y is continuous.

procf. Let B be a countable base in Y. For each veB lec Fu =
cl f—l(V) - int cl f_l(V‘). Each of the sets Fy is nowhere dense and closed.
Therefore Z = X - U {Fv . ve Bl is a residual subspace of X. The function
EIZ : Z*Y is then nearly continuous. 1t is also separating (see Lemma 4).
Now, if Y is locally Cech-complete then, applying Theorem 8, we conclude that
function ElZ is continuous; if Y is countably compact we obtain the same
conclusion using Theorem 9, because first countable regular spaces

are of pointwise countable type. O
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