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PROPOSITION 4. I dLX), d(¥) fo some nfistecardinl x, chn thereace at o 2°
separately contimuons fuctions £+ X x ¥ — B (As usual, d(X) denots the density of
x)

PROOF. Lt D sad E be dense subsets of X a0d ¥, respectivel, each of cadinality st
st . Suppose that f,g X x ¥ — IR are sepaately continuons and agree on D x E.
Fix s € D;f and g are contionous on (<) ¥ and agees o s dene subsct ] x 5, 50
infat they agree on ) x ¥. Thus, / and g agree oo D x ¥, and a second applicaion
of cseatilly the same acgumet shows that f = 5
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DEFINITION. Let (X, <) be  fxe liearly ordored st Then a et A s called coloal i
XHACX and Ve € X 306 A+ < o Further, the cofinality of X, c(X) is deined by
€f(X) = min 44 C X is cofnal n X)

EXAMPLES: ¢f(IR) = w,cf(0) = o, sine gy s = Upe o =, and ef(en) =

PROPOSITION 6. For any ordinal a and 8, | O x 8, ) |< max(2*,[af*,| 8 ).
"PROOF. We merely outine the proof, which i staightforwsd but tedious. The resit
i rvial for countable @ and 5. Suppose that wn < o < 9 and that the resul has been
establishd for all products in which at east one fcto it o than 0. W o = 1.4 1,
then by th induction hypothesisther are at smost | C(r x A,R) || C({r) x 4, )
€% BIR) |1 C(1 % 8,1 [<1 8 | choice or f € Cla x 4, ). Similcly, if ef(a) = .
then i the discree wnion of  subepaces each Borecmorphic o s ardinal Js thas
a, whence | C(ax AR |S (| 8 1) =| § [ We may therefore sssume that a is of
uncountable cofinality, and the proot i completed by induction on > o

<f(5) s uneoustable, Fx f € (o x 5, ).

CLADM: There are & < and 7 < such that 1 s constant on (0\5)  (413).

Ouce the CLAI i ctablished, the ret is easy, since o x 4 i the it wnion of
(@18) % (37,0 % B, and 8 (9\3). By hyponbiis there ace i most | | continsoos,
ol valued functions on each of the ast two et there ae only | | | 8= 5 | ways
o choose a and 1 aad anly 2¢ ceice for the valu of £ o0 (a\) x (315), s0 alogether
thereare nly ot most | 41 choics fo /.

The proof of the CLAIM relis heavily oa the Pressing Down Lemma ({3, Theorem
ALS). I case ¢f(a) = ef(3) it s sisllas o the proof of the well know reslt that
any continuous,seabvalued functon on an ocdinal of uncoustable cofinality i eventualy
constaat 1€ cf(@) 4 ¢f(4), we must work itk basder, There n no hae in aasuming
that cf(0) < cf(3) Lot (o < cf(a) and {8+ < ef(8) be contino, increwing
sequences cofnal in @ wad 9, respectvey. For ench 7 < af]({7) x ) b eventualy
constant, 40 there ve vy € R(E < cf(a)) and o < 8 such that Sy, 6) = r, for ench
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§< ef(a) and 6 € B\fo. Now fx n € w and. lmit ordioal i < cf(a). I & < J < ef(8)
and i o limit ordinal, then there are f3) < i and Kj) < j such that if ay < 7 S 0
nd By €8 € By, then | £(r,0) =y |< 27 T llows from the Presing Down Lemsma.
that ther ave & < 3 nad a staionary S € cf(9) such that By = & for ench j € .
Andsince | S [>] 1, there are (i) <  and o coflaal Zy €  such that a(j) = )
fo ench J € Za. T, i 2y €7 < g nd 8, S 6 < B, then | f(r.6) =y [< 27
Let by = sup{s § < cf(a)) < 6, and note that by the Presing Down Lemma o
constant on & sationary set o § < cf(a). Ths < 5, then | (1.8) = rigm 1< 2" To

{ele > a) and {zle < 9). W cal this topologicalspac the odinal sace [0, o simply.
the ordinl pace 7. Observ tha the sets (2] = {efe > ) {elz < 3+ 1) e a bsis
fo the topology
EXAMPLE 1. Let X be the orinal space c. By Propositon 8 SCOX x X),JR) [2 2, and.
chonsly oquality must hold. By Propesiton 8, bowever, | C(X¥ x X, ) [< ¢ = c,and gaie
it inceas that cquality holds. Thos, | CCX x X,1R) = ¢ < 2 =] SOLX % X.JR) ;s one
separatly continuousrea-vlued functons than coninsons ones. O

Accordin o Baire [Ba) it was Volerra who obecrved that i £ : Rx R — R i
separatly continos thn fo enc point (a,4) € R x I, forench dis D with cente ()
d fo ench €0, there i dive Dy contuinc i D vch that | (,1)  f(a, ) |< ¢ for
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In generl, noe of the sbove aeows can b revered. As it can be seen, symaetric
Qi contimityisvery close o separate continuity.
Now two questons aise
(1) Can a symmetrically quas coninous functon be determined from it vabes o 3
dense st o it dommain?
(2) What s the cardinality of the ciss of all ymmetsially qussi-contizuons fusetions
deined oo “uice” spaces, e, et X xY = 3T
W shal answer bth of these quetions. Here n » negative anewer ta Questin (1),
ExAMPLE 2. Defne £+ B+ Roand g —» B s follows:

[T b
ren= (T

- L yig
ey = { VAR T4
il P
We s that f and g agee on the eniseplane,excep fo one poiat (0,0) and there
they o diffcent. ©

There aze only ¢ = (2%) functions of any kind from T to I we now show that
there are 2 syemmetcally quas-contimoos functioss oa B
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PROFOSITION 7. There ae 2 symmetsiclly qust-continousfctons - — .
PRoor. - Let s deate by Xo the st {(s) 2> 0 and s < y < 2e]. Fusher, It
A= (50 = 22 and > 0] Obviouly card A = . Now le s consde he power
50 24 A, the et of al subcts of A, Cleasly,card 24 = 2, Let A b the eeerts
G4 €. Now, It x¢ be the chaaceristc foction of Xo U Ao i,

(1 Hemexus
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‘COROLLARY 2. Theresce 2 masy qussi-continons fuctions /R —+ R,
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