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Abstract

Henriksen and Woods [Topology Appl. 97 (1999) 175-205, Problem (C). p. 203] asked whether
there are Tychonolf spaces X and ¥ with X x ¥ being Baire such that:

(1) Every separately continuous function f: X x ¥ — [ has a dense (in fact: G5) set C(f) of points
of continuity:

(b) There exists a separalely continuous function g: X x ¥V — K for which C(g) fails to contain
either A x Y or X x B forany dense Gg set A C X ordense Ggset BCY.

We will answer this question by showing the spaces X and Y can even be complete metric and
condition (b) can be strengthened to the following: There exists a separately continuous [unction
g:X x ¥ — R sothat il C(g) contains either A x ¥ or X x B, then both A and B are empty.
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1. Big quadrant

Let X =Y = @trem.llm' 1] be the topological sum of spaces [0, 1]y, @ € [0, 1]
metrized with the metric d, defined as follows:
|[x — ¥], il both x and v belongs to the same [0, 1]y, O < < 1,
- - o

d(x,y)= )
1, otherwise.
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(X.d) is obviously a complete metric space. Moreover, we can think of X as an ordered
set: within each [0, 1], we have the usual ordering and if x € [0, 1g. ¥ € [0, I1p with
@ < flhenx < Y. Similarly for Y.

Now consider X x ¥ = (@gcionl0: Ha) * (B eio.nl0: e think of it as a matrix
consisting of ¢ x ¢ many squares Sy = [0, 1], % 10,1 . 01 < lLand0<s < 1, having ¢
many “rows and ¢ many scolumns’. BEach square S, has its own local coordinate systen.

2. Condition (a)

By the Kuratowski-Montgomery theorem [ 1, Theorem 3.3, p. 2991, any separately
continuous function f*is class | of Baire as a real-valued separately continuous function
defined on a product of two metric spaces. As such, f is pointwise discontinuous: that is,
the set D(f) of discontinuity points is of first category. Thus C( f) is residual. As a product
of two complete metric spaces, the product X x ¥ is Baire. so C(f). in fact, is a dens¢ Gy
subset of X x Y, since the range of f, the reals, is a metric space. Therefore condition (a)
mentioned in Abstract is met.

3. Condition (b)

We shall now prove that there is a separately continuous function g: X X Y — IR for
which C(g) contains neither A X ¥ nor X x B forany dense Gg set A C X or dense G
selBCY.

In what follows we shall construct a set D C X » Y of the form D ={Dy: (r$) €
10, 11 % [0, 1]} where for a fixed pair (r.5), Drs is a point from the square Sr.s lying on
its main diagonal, i.c.. in the local coordinate system of Sq.rs Drs = (dy.s. dr.s). We will
define the numbers d;.s in such a way that the following holds:

(a) Vr,s: card(D N S Y=l
(b) pry D is dense open in X and pry D is dense open inY.

Let us consider first the uncountable family of squares Sr.o lying in the first “row’. In
the first square S0.0 of this family pick Do.o = (do.o.do.o) = (0.0, in the local coordinate
system of So.0- Thus Do.o is the lower, left corner. As we increase o keeping s =0, the
point Dy 1s gradually moving upwards along the main diagonal of each square until it
hits (1, 1). More prcciscly. weputdpo=1r.1€ [0, 1]. Now fix sp € (0, 1] and consider the
corresponding row of the squares. Put

’ {r + s0. iftr +so< 1,

r.sy = ip

W o 4s) =1, ifrtso> 1
Thus Doy, 18 @ point from the diagonal of So., different from (0. 0) (in local coordinates).
As we increase r', keeping so lixed, the soint Dy, is graduall moving upwards along the
& I s 18 8 gup g

main diagonal of each square until it hits (1. 1). Then it falls down-left and starts growing
from right outside of (0. 0) until it reaches its starting position.
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Now we are going to define g : X x ¥ — R by defining its restriction g, , to each square
S,.5 as follows (we use local coordinates):

2 —dy ) (y—dy5) e ;
gr(x.v) = | Godi) T (=, )7 i (%, ) # (drisy drs):

0, otherwise.

Observe that g, ¢ is continuous on S, . except for the point D, .
It follows from the construction that C(g) contains neither A x ¥ nor X x B for any
nonempty set A C X or nonempty set B C Y.

Comment. A somewhat less involved example, one “column™ only, was designed by
Jack B. Brown (see |1, Example 6.14, p. 313]) to answer in the negative. questions by
A. Alexiewicz, W. Orlicz [2] and JL.P.R. Christensen [3] whether the assumption that
both spaces X and Y are complete metric, suffices in Namioka-type theorems. In other
words, there are complete metric spaces X and ¥ and a separately continuous function
J X x ¥V — R such that there is no Gy set A € X such that A x ¥ < C(f); in fact the
largest such a sel is empty.
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