Zbigniew Piotrowski, Department of Mathematics and Statistics, Youngstown State University, Youngstown, OH 44555-3302, email: zpiotr@math.ysu.edu

ON SOME PROBLEMS ON SEPARATE VERSUS JOINT CONTINUITY

Let X, Y and M be "nice" spaces and let $f: X \times Y \to M$ be a function. Firstly, we shall deal with the question pertaining to the existence of the continuity points C(f) under various assumptions pertaining to the x-sections f_x and y-sections f_y .

Notice that although Baire-Lebesgue-Kuratowski-Montgomery theorems "handles well" the case when f is separately continuous -f is of 1st class then (see W. Rudin (1981), Moran (1969) and M. Henriksen, G. Woods (preprint)), Baire classification of functions is "too rough" already in the case when all x-sections are continuous and all y-sections are of 1st class -f is of 2nd class then.

Consider the following statement:

- (*) Given a metric space M. Let $X \times Y$ be a Baire space and let $f: X \times Y \to M$ be a function having all y-sections continuous. Then C(f) is a dense G_{δ} subset of $X \times Y$.
- Y. Mibu (1958) showed that (*) holds, if X is 1st countable and f is separately continuous. He proved also that (*) is true when X is 2nd countable and f has all x-sections pointwise discontinuous.
- G. Debs (1987) showed that (*) holds if X is 1st countable, Y is a "special" α -favorable (hence, Baire) and f has all of its x-sections of the 1st class (in his sense). The author [(1993) and (1996) for an alternative proof)] showed that (*) is valid if X is 1st countable Y-Baire and M-Moore and $f: X \times Y \to M$ has all x-sections quasi-continuous.

Problem 1 Let X be 1st countable and let $f: X \times Y \to M$ has all x-sections pointwise discontinuous. Does (*) hold?

What if Y is Čech-complete?

87

Assume that X is Čech-complete, Y is locally compact and σ -compact and Z is metric. Assume $f: X \times Y \to Z$ is separately continuous I. Namioka (1974) showed that then there is a dense G_{δ} set $A \subset X$ such that $A \times Y \subset C(f)$.

M. Talagrand (1985) asked the following problem: Let X be Baire, Y be compact, Hausdorff and let $f: X \times Y \to IR$ be separately continuous. Is C(f) nonempty?

Recall that a function $f: X \to Y$ is termed feebly continuous if $\forall V \subset Y: f^{-1}(V) \neq \phi \Rightarrow Intf^{-1}(V) \neq \phi$.

Theorem 1 (E. J. Wingler and the author – "Q & A in General Topology," (accepted)) Assume that every separately continuous function f from the product $f: X \times Y$ into a completely regular space is feebly continuous. Then any separately continuous function from $f: X \times Y$ into Z is determined by its values on any dense subset of the domain.

Problem 2 Let X be a Baire space and let Y be compact T_2 . Is every separately continuous function $f: X \times Y \to \mathbb{R}$ feebly continuous?

Remark 1 A positive answer to Problem 2 would solve Talagrand's problem, since such a feebly continuous function defined on a Baire space $(X \times Y)$ has C(f) nonempty.

* * * R. Kershner (1944) characterized the set C(f) of a separately continuous function $f: \mathbb{R}^2 \to \mathbb{R}$. Namely, if $X = Y = \mathbb{R}$:

 $\binom{*}{*}$ Let $S \subset X \times Y$. Then $X = Y \times Y \setminus C(f)$ of a separately continuous function $f: X \times Y \to IR$ if and only if S is an F_{σ} contained in the product of two sets of 1st category.

J. C. Breckenridge and T. Nishiura have generalized this result to compact metric spaces X, Y (1976).

Answering the author's question (1989), V. K. Maslyuchenko, V. V. Mykhaylyuk and O. V. Sobchuk (1992) showed that Kershner-Breckenridge-Nishiura's characterization is no longer true, if X and Y are arbitrary compact, Hausdorff spaces.

Problem 3 Find the largest class \mathcal{P} of metric spaces such as $X, Y \in \mathcal{P}$ if and only if $\binom{*}{*}$ holds.

Are UC (known also to Atsuji, or Lebesgue) spaces the spaces for which (*) holds?

Michael J. Evans, Department of Mathematics, Washington and Lee University, Lexington, Virginia 24450, USA, email: mevans@wlu.edu

WHY IS SYMMETRIC POROSITY SO DIFFERENT?

This talk was based on joint work [2] with Paul Humke.

Porous sets and symmetrically porous sets have previously been contrasted in [6], [3], [4], [5] and [8]. Both of [6] and [3] pointed out that the following two fundamental properties of porosity fail for symmetric porosity: 1) [1] Every nowhere dense set A contains a residual subset of points x at which p(A, x) = 1. 2) [7] If A is a porous set and $0 , then A can be written as a countable union of p-porous sets. For example, in [3] a closed 1/2-symmetrically porous set A with the property that <math>\operatorname{sp}(A, x) \leq 4/5$ for every $x \in A$ was exhibited, and it was observed that such a set cannot be written as a countable union of sets having symmetric porosity more than 4/5 at each of their points. We take such results as the starting point for the present investigation [2] to explore such questions as

- i. If E is a p-symmetrically porous set, must there be any points in E having symmetric porosity greater than p? (If so, is the collection of such points residual in E and how large can the symmetric porosity at such points be?)
- ii. If E is a p-symmetrically porous set, can E be written as a countable union of sets, each of which has symmetric porosity greater than p at each of its points? (If so, can we find a q > p such that each of the constituent sets is q-symmetrically porous?)

Our results include the following:

Theorem 1 If 0 and <math>E is a closed set which has symmetric porosity at least p at each of its points, then there exists a number q, p < q < 1, such that the set

 $\{x \in E : the \ symmetric \ porosity \ of \ E \ at \ x \ is \ at \ least \ q\}$

is residual in E.

Example 1 Given $0 , there exists a <math>G_{\delta}$ set $E \subseteq [0,1]$ such that E has symmetric porosity exactly p at each of its points.

Example 2 Given 0 , there exists a closed set <math>E, such that E which has symmetric porosity at least p at each of its points, but cannot be written as the countable union of sets each of which has symmetric porosity greater than p at each of its points.

References

- [1] A. Denjoy, Lecons sur le calcul des coefficients d'une série trigonométrique, Part II, Métrique et topologie d'ensembles parfaits et de fonctions, Gauthier-Villars, Paris, 1941.
- [2] M. J. Evans and P. D. Humke, Contrasting symmetric porosity and porosity (in preparation).
- [3] M. J. Evans, P. D. Humke and K. Saxe, A symmetric porosity conjecture of Zajíček, Real Anal. Exch. 17 (1991–92), 258–271.
- [4] M. J. Evans, P. D. Humke and K. Saxe, Symmetric porosity of symmetric Cantor sets, Czech. Math. J. 44 (1994), 251–264.
- [5] M. J. Evans, P. D. Humke and K. Saxe, A characterization of σsymmetrically porous symmetric Cantor sets, Proc. Amer. Math. Soc. 122 (1994), 805–810.
- [6] M. Repický, An example which discerns porosity and symmetric porosity, Real Anal. Exch. 17 (1991–92), 416–420.
- [7] L. Zajíček, Sets of σ -porosity and sets of σ -porosity (q), Časopis Pěst. Mat. **101** (1976), 350–359.
- [8] L. Zajíček, Porosity and σ -porosity, Real Anal. Exch. 13 (1987–88), 314–351.