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ABSTRACT. A Mibu-type theorem is any result in which a class of not
necessarily continuous y-sections f, is specified, so that for any f :
[0,1] x [0,1] — IR having all z-sections f; continuous, the set C(f) of
point of continuous, the set C(f) of point of continuity of f is a dense,
G subset of [0,1] x [0,1].

In this paper a different proof of a Mibu-type theorem is provided.
For the reader’s convenience though, we quote the most needed and
relevant definitions and theorems.

We illustrate the presentation of the results with a few examples
showing that some of the theorems are best possible. Two questions are

poeed.
§1. INTRODUCTION

Let us start from the following:
(*) Let £:{0,1) x[0,1] — R be a function having all z-sections f, continuous. What must
all y-sections f, be in order for f to have a dense G set C(f) of points of continuity?

Of course, if all y-sections are continuous, then by a theorem of R. Baire {Ba] such
an f is of first class of Baire, and as such it has a dense G5 set C(f), see [P2] for further
generalizations.

But what if we weaken, a bit, the assumptions pertaining to the sections?

As an example, [P1] shows one cannot relax these assumptions too much, since there
is a function f : [0,1} x {0,1] — IR having: all but countably many z-sections (resp. y-
sections) continuous, whereas these countably many z-sections (resp. y-sections) have only
finitely many points of discontinuity (thus all z-sections and all y-sections are being of first
class) while the set C(f) = 9.
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Now, assume f :[0,1) x [0.1} — R has all of its z-sections f, continuous and all of its
y-snctions f, of first class of Baire. What is the set C(f)?

There is no general theory that would provide an “automatic” answer. The celebrated
theorem of Baire, later generalized by H. Lebesgue, K. Kuratowski and D. Montgomery
asserts that such an f is of second class of Baire. But second class of Baire functions may
have empty set of points of continuity(l); take the “salt & pepper” function, f(z) =0, if
z is rational f(z) = 1, if z is irrational. .

Before we answer the above specific question as well as provide s few answers to a
general problem (*) mentioned at the beginning of the Introduction, we need & couple of
defintions.

§2. DEFINITIONS.

A space X is called Baire if every upen nonempty subset of X is of second category.

If AC X and U is a collection of subsets of X, then st(A,U) ={{U €U : UNA # ¢}.

For z € X, we write st(z,U) instead of st({z},U). _ '

A sequence {Ga} of open covers of X is called a development of X if for each z € X
the set {st(2,Ga):n € N} is & base at z.

A developable space is a space which has a development'

A Moore space is a regular developable space.

A function f : X — Y is called guasi-continuous et ¢ point & X if for each.open
sets AC X and H C f(X), where z € A and f(z) € H wehave AN Intf~1(H) # ¢,

A function f : X — Y is called quasi-continuows if it is guasi-continuous at each point
of X2

Given spaces X,Y and Z, a function f: X xY — Z is said to be guasi-continuons at
(p.q) € X xY with respect to the variable y if for every neighborhood N‘j](p.q) and for
every neighborhood U x V of (p, ) there exists a neighborhood V! of ¢ with V! C V and
2 nonempty open U' C U such that for all (z,y) € U! x V! we have f(z,y) € N. U f is
quasi-continuous with respect to the varisble y at every point of its domain, we say that
f is quasi-continuous with respect to . o

Given a metric space M, s function f : X — M is called of first class (in the sense
of G. Debs) if for every & > 0, for every nonempty subeet A C X, there is a nonempty set
U, open in A, such that diam(f(U)) < e.

For “nice™ spaces, say X =Y = IR, being the domain and the range of f, respectively
we have the following diagram, where “—" denotes the inclusion:

'Every metric space is developable; take the family B, of balls of diameter less than € as
a development.
3Sce [Ba] p. 95, see also {HT) and [T¥].
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where PWD stands for the pointwise discontinuity; a function f is pointwise discontinuous
if C(f) is dense.

I
§3. SOME MIBU-TYPE THEOREMS.

We are now ready to give some answers to the spectacular question (*) mentioned at
the beginning of the Introduction.

Due to the fact, that Y. Mibu [Mi] was the first to answer this question, for f,'s not
being necessarily continuous, any positive answer to (*) we shall call a Midu-type theorem.

Coasider the following four theorems®

Theorem 1. [Mi] -~ Mibu's First Theorem.

Let X be first countable, Y be Baire and such that X x Y be Baire. Given a metric
space M. If £ : X x Y — M is separately continous, then C(f) is a dense G4 subset of
XxY. ‘

Theorem 2. [Mi] - Mibu's Second Theorem.
Let X be second countable, Y be Baire and such that X x Y is Baire. Given a metric
space. M. f f: X xY — M has: '
a) all z-sections f; PWD and; .
b) all y-sections f, continuous; then C(f) is a dense G subset of X x Y.

Theorem 3. [De] - Deb’s Theorem.
Let X be first countable, Y be a special a-favorable space (thus Baire), X x Y be
Baire. Given a metric space M.
Hf:XxY = M has:
a) all z-sections f, of first class (in the sense of G. Debs) and;
b) all g-sections f, continuous; then C(f) is a dense G subset of X x Y.

Theorem 4. (P1], Theorem B.
Let X be first countable, Y be Baire and Z be Moore. If f: X x Y — Z has:
a) all z-sections f, quasi-continuous and;

3Theorem 4 implies Theorem 1
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b) all y-sections f, continuous, then C(f) is a dense G4 subeet of {z} x ¥; thus
C(f) is a dense, G subset of X x Y,
In this paper we shall give a shorter proof of the above Theorem 4; rather than
using, ad hoc, a Banach-Mazur game, we shall derive this result from some properties of
a generalized oscillation function 1.

§4. GENERALIZED OSCILLATION FUNCTION AND QUASI-CONTINUITY.

If f: X — Y is a function and P is an open cover of the space Y, then we set:*

0(f,P) = {z € X: there is an open neighbarbood U of z and a member V of P such
that f(U) C V}.

If Y is & metric space and P, is the family of all balls of diameter less than ¢, then
Q(f, Pe) = w(f, P.) is the set of all points where the oscillstion of f does not exceed ¢.

The sets of the form §(f, P) are open. ‘ .

Lemma 1. Let X and Y be spaces and let {P,} beadevelopmentfor Z. f f: X ¥Y — Z
is quasi-continuous with respect to z, then:
Q(f, {Pa}) is dense in {z} x Y for every x € X.

Proof. Let 2y € X be arbitrary and let V be a nonempty open subset of Y. Now, let 1
be an arbitrary element of V. Since Z has a countable development {P,}, there is a local
countable base at every point of 2; in particular, take {G*} at f(zo,po). Take G'* Now
by the quasi-continuity of f with respect to z for every neighborbood U® x V'* of (20, y0)
(here, we may assume V* = V), there exists a neighborhood U? dz,'ithU’ CUanda
nonempty open V! C V such that f(U! x V) C G.

Now, let us recall that Q(f, {Pa}) = {(z,y) € X xY: there is a.nopennq;hhorhood
Un x Vq of (z,y) and a member P of P, such that f(Uqg x V) C P). Since {G™} is a local
base at f(zo,yo) We may assume P = G*. Wecanaboluumel/n = U! and V3 = V1.
Clearly, f(Ug x Va)= (U x V1) C G* =

Further, Q(f, {Pa}) = U} x V1. Obocrvetha.t Qf, {Pa))N({20} x V) = (U? x V)N
({zo} x V) = {z9} x V! # ¢. Since V is an arbitrary nonempty open subset of Y this
shows the density of Q(f,{Pa})in {z} xY. D

Lemma 1 [Sz]. Let {P.} be a development for ¥ and assume Q(f, P.) is dense in X, for
each n € N. Then the function f is continuous at each point of a residual subeet of X.

Corollary 1. ([Pl],TheoremA)LetXbeaspweY‘beBaireandkt{?.}bendcveloﬁmmt
for Z. If f: X xY — Z is quasi-continuous with respect to z, for all z € X, then the set

4The original idea is due to A. Szymanski [Sz], although some similar notions have been
used earlier, see (Ew] or [Is}.
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'C(f)dpointsdemﬁnuityo{filruidmlinthemdthefonn{:}x}’,i.e. is a dense,
G subset in the sets of the form {z} x Y. .
Now, in view of.

Lemma 3. ([LP],Icmmaz)LetXbeﬁntcountnble,YbeBa.ireaneregulu. If
f: X xY — Z has all of its z-sections f, quasi-continuous and has its y-sections f,
continuous, with the exception of a first category set, then f is quasi-continuous with
respect to z. .

We have the following statement which slightly generalizes our Theorem 4.

Statement. Let X be first countable, Y be'Baire and Z regular. i f : X xY — Z has all of
its z-sections f, quasi-continuous and has its y-sections fy continuous with the exception
of a first category set, then the set C(f) of continuity points of f is a dense G; in the sets
of the form {z} x Y.

§5. EXAMPLES AND OPEN QUESTIONS.

The following (routine) Example 1 shows that “quasi-continuity with respect to z”
cannot be replaced by “quasi-continuity” in Corollary 1.
Example 1. Let f: (0,1) x (0,1) = R be defined by f(z,y) =1if(0<z<iand
0<y<lor(z= } and y is rational in (0,1)), and f(z,y) = 0. Clearly, f is quasi-
continuous, however there is an 2(= }) such that C(f) N ({z} x Y) = ¢.

Remack 1. There is an impartant link between continuity points in sets of type {r} x V3
and some associated mapping.

Namely, any point of the section {z} x Y is a continuity point of f: X xY — [-1,]]
if and only if z is a continuity point for the associated mapping:

F: X —» C(Y) defined by

F(zXy) = f(z,y), with respect to norm-topology on C(Y), see [Ch}; C(Y) stands for
the Banach space of continuous functions on Y.

The following two Examples show that the assumptions that X is “first countable”
and that Z is “Moore™ are, in a sense, indispensable.

Example 2. ([T1]) Let Y and Z denote the closed unit interval I = [0,1] and let X
be the space Cy(I,I) of continuous functions from I into /, equipped witht he pointwise
topology. Then f: X x Y — Z given by f(z,y) = Z(y) is separately continuous which is
discontinnous at every point of X x Y.

It is woeth noting that Cy(1,1) is & Tychonoff space having a countable network [E.
Michael (1966)] and as such it is hereditarily Lindelsf and hereditarily separable. C,(I,1)

3See Theorem 4.
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is not a Frechet space and thus not first countable [R. A. McCoy (1980) and J. Gerlits

(1983)).
The following Example 3 shows the necessity that the range space Z is Moore.

Example 3. [Ch] Let X =Y = [~1,1] and let Z be the space of mappings from [~1, 1]* into
[~1,1) equipped with the pointwise topology. Thus F(z,y) is a function of (a,b) € [—;, 1)?
given by

F(zyv)(a,b)={ (2-0)'+(v b)’
0, otherwise

F is separately continuous, but not (jointly) continuous at any point. Z is a “large”
compact Hausdorff space.
We were unable to answer the following two problems:
Problem 1. Let X be first countable, Y be Baire and such that X x Y is Baire. Gnvena
Moore space (or even metric space) Z. Assume f: X xY — Z has:
a) all z-sections f; PWD and;
b) all y-sections f, continuous.
Must f be PWD, i.e. C(f).iuldenn Gy subset of X x Y7

Problem 2. Same as Problem 1, except for, assume X is “compact Hausdorff” instead of
“first countable”.
Remark 2. Answers in positive, to Problem 1 wouldbeuttonggenanhnﬂomofmd
the above Theorems.

Symbolically, this would mean: “PWD” x “Continuity” = “PWD"

Remark 3. Answers in positive, to Problem 2, would solve an outstanding problem of M.
Talagrand (T2 whether every real-valued, separately continuous function from a Cartesian
product of a Baire space and a compact Hausdorff space has a nonempty set C'(f)o(pomt.l
of continuity.

REFERENCES

[Ba] Baire, R., Sur les fonctions des variables réelles, Ann. Mai. Pure Appl, 3(1899),
1-122. '

[Ch] Christensen, J. P. R., Joint continuity of separately continuous functions, Proc. Amer
Math. Soc., 82(1981), 455-461.

[De] Debs, G. Fonctions separément continues et de premiere classe sur espace produit,
Math. Scand., 59(1986), 122-130.




147

(Ew| Ewert, J., On barely continuous and cliquish maps, Demonstratio Math., 17(1984),
331-338. .
(HT] Hansell, G., Troallic, J.-P., Quasi-continuity and Namioka'’s theorem, Topology &
Appl., 46(1992), 135-149.
(Is] Isbell, J. R., Uniform spaces, Providence 1964.
[LP] Lee, J. P., Piotrowski, Z., On Kempisty’s generalized continuity, Rend. Cic. Mat.,
Palermo, 34(1985), 380-386.
[Mi] Mibu, Y., On quasi-continuous mappings defined on product spaces, Proc. Japan
Acad., 192(1958), 189-192.
{P1] Piotrowski, Z., On the theorems of Y. Mibu and G. Debs on separate continuity,
Topology Proceedings (accepted).
(P2} Separate and joint continuity, Real Analysis Ezchange,
11(1985-86), 293-322.
[Sz] Szymaiski, A., On separately continuous functions (preprint).
{T1] Talagrand, M., Deux generalizations d'un théoreme de 1. Namioka, Pacific J. Math.,
81(1979), 239-251.
[T2] Espaces de Baire et espaces de Namioka, Math. Ann.,
270(1985), 159-164.
(Tr] Troallic, J.-P., Quasi-continuité, continuité separée, et topologic extrémale, Proc.
Amer. Math. Soc., 110(1990), 819-827.




	Mibu-Type Theorem
	p2
	p3
	p4
	p5
	p6
	p7

