What are Fungi?

Fungi in the Tree of Life

- Living organisms on earth first arose about 3.5 billion years ago
 - Prokaryotic
 - Anaerobic
- Oldest fossils of fungi are about 460 million years old
- Coincides with the rapid expansion of multi-cellular organisms
- Major multicellular eukaryotes are divided into Kingdoms
 - Animals
 - Plants
 - Fungi
- Each of these three kingdoms differ in their basic cellular structure and mode of nutrition (defined by Whittaker, 1969)
 - Plants photosynthetic, cellulosic cell walls
 - Animals digestive systems, wall-less cells
 - Fungi absorptive nutrition, chitinous walls
- The estimates for the expansion of multicellular organisms are based upon phylogenetic analyses of Carl Woese
 - Examined ribosomal RNA (rRNA)
 - Present in prokaryotes and eukaryotes
 - Relatively stable, but changes occur over time; thereby acting as a chronometer
 - Distinguished three separate groups (Domains) of living organisms
- Domains rRNA sequence differences correlate with differences in cellular structure and physiology
 - Bacteria "true bacteria"
 - Archaea "ancient prokaryotes"
 - Eucarya eukaryotes
- · Taxonomic grouping of "Kingdom" lies beneath that of "Domain"
- Though the fossil evidence suggests fungi were present on earth about 450 million years ago, aquatic fungi (Phylum Chytridiomycota) most likely were present about a million years before this time

- About 354 417 million years ago, fungi evolved with primitive land plants
- These plant-associated fungi probably helped their photosynthetic partners gather nutrients from the harsh soils of the time
- These fungi were the early ancestors of the present day phylum Glomeromycota
- Despite plant-fungus co-evolution, fungi are more closely related to animals

Defining the Fungal Kingdom

- Mycology is the study of fungi
 - Myco- = fungi
 - -ology = the study of
- Mycology originally arose as a branch of botany because fungi were once believed to be "achlorophyllic" plants

Why Study the Fungi?

- There are over 100,000 species of known fungi and probably 15 times that many that have yet to be discovered
- Fungi are an extremely important part of the ecosystem
 - Recycling of minerals and carbon
 - Source of food, medicines, and chemicals
 - Important models in scientific research
 - Cause plant and animal diseases

Defining the Fungal Kingdom

- Fungi are simple, eukaryotic microbes
 - Many are microscopic
 - Studies typically employ standard microbiological techniques
- Mycologists (fungal biologists) have traditionally studied not only the true fungi (e.g., mildew), but also fungus-like organisms (e.g., slime molds)
- The kingdom Mycota is comprised of the true fungi
- True fungi have the following features:
 - Eukaryotic
 - Typically grow as filaments, termed hyphae (sing., hypha) via apical growth [the latter differs from the growth of other filamentous organisms]

- Fungal hyphae repeatedly branch to form a network of filaments termed a mycelium (sing., mycelia)
- Some fungi grow as a single-celled entity, termed a yeast, that grows either by a budding process or via binary fission
- Some fungi can switch growth forms between a hyphal phase and a yeast phase, a property known as dimorphism
 - Typically induced by environmental conditions
 - A number of such fungi are disease-causing agents of humans and animals
- Heterotrophic (chemo-organotrophs) require preformed organic compounds
- Absorb nutrients after degradation by exogenously released enzymes
- Unique cell wall components
 - Chitin
 - Glucans
 - Rare instances of cellulose, but definitely fungal cell walls are not as rich in this polymer as are plants
- Typically have haploid nuclei
 - Hyphae often have a number of haploid nuclei present in each cell
 - Some yeasts have a single diploid nucleus
- Reproduce both sexually and asexually, typically through the production of spores
- Other differences between fungi and animals and plants include:
 - Histone types
 - Sensitivity of microtubules to inhibitors
 - Manner of lysine biosynthesis
 - Membrane sterols
 - Organellar structure/morphology

Major Activities of Fungi

- Plant parasites
 - Irish potato blight of the 1840s
 - Dutch elm disease
 - Disappearance of frogs in Costa Rica
- Plant symbionts
 - Lichens (can also form with cyanobacteria)
 - Mycorrhiza

- Human pathogens
 - About 200 known species of fungi are known to infect humans
 - Diverse diseases including:
 - Dandruff
 - "ring worm"
 - Pneumocystis infection of HIV-infected persons
 - Candidiasis (mucocutaneous and systemic)
- · Biological control agents
 - Mycoparasites (other fungi)
 - Entomopathogens (insects)
 - Nematophagous (nematodes)
- Decomposition
 - Cellulose (plant material)
 - Rumen fungi in cows
 - Dry rot
- Toxin production (mycotoxins)
 - Aflatoxins (peanuts and grains)
 - Mushroom poisoning

Fungi in Biotechnology

- Foods and flavorings
 - Edible mushrooms
 - 5 million tons produced worth \$14 billion (1994)
 - Diverse types now widely available in supermarkets
 - Alcoholic beverages
 - Breads, cheeses, soy sauce
 - Quorn mycoprotein

- Fungal metabolites
 - Two categories
 - Primary intermediates or end products of common metabolic pathways essential for normal cellular function
 - Secondary diverse range of compounds formed by specific pathways of a given organism and not essential for growth (but may provide some selection advantage)
 - Examples of primary metabolites
 - Citric acid (estimated 200,000 tons produced in the year 2000) [soft drinks]
 - Gluconic acid (estimated annual production of 100,000 tons) [food additive]
 - Itaconic acid (estimated annual production of 80,000 tons) [paint and adhesive manufacture]
 - Examples of secondary metabolites
 - β-lactam antibiotics, e.g., penicillins and cephalosporins
 - Non-β-lactam antibiotics, e.g., griseofulvin, gliotoxin, ciclosporins
 - Pullulan film-wrap for food in Japan
 - · Chitosan sewage clarification, plant defense initiator
- Enzymes and enzymic conversions
 - Extracellular enzymes
 - Commercially valuable roles
 - Food industry
 - Bioconversions
- Heterologous gene products expression of foreign proteins by fungi having medical/industrial applications

Terms You Should Understand

- 'Fungus' (pl., fungi) is a taxonomic term and does not refer to morphology
- 'Mold' (sometimes spelled 'mould') is a morphological term referring to a filamentous (multicellular) condition
- 'Mildew' is a term that refers to a particular type of mold
- 'Yeast' is a morphological term referring to a unicellular condition

Special Lecture Notes on Fungal Taxonomy

- Fungal taxonomy is constantly in flux
- Not one taxonomic scheme will be agreed upon by all mycologists
- Classical fungal taxonomy was based primarily upon morphological features
- Contemporary fungal taxonomy is based upon phylogenetic relationships

Fungi in a Broad Sense

- Mycologists have traditionally studied a diverse number of organisms, many not true fungi, but fungal-like in their appearance, physiology, or life style
- At one point, these fungal-like microbes included the Actinomycetes, due to their filamentous growth patterns, but today are known as Gram-positive bacteria
- The types of organisms mycologists have traditionally studied are now divided based upon phylogenetic relationships
- These relationships are:
 - Kingdom Fungi true fungi
 - Kingdom Straminipila "water molds"
 - Kingdom Mycetozoa "slime molds"
- Kingdom Fungi (Mycota)
 - Phylum: Chytridiomycota
 - Phylum: Zygomycota
 - Phylum: Glomeromycota
 - Phylum: Ascomycota
 - Phylum: Basidiomycota
 - Form-Phylum: Deuteromycota (Fungi Imperfecti)
- Kingdom Straminipila (Chromista)
 - Phylum: Oomycota
 - Phylum: Hyphochytridiomycota
 - Phylum: Labyrinthulomycota
- Kingdom Mycetozoa
 - Phylum: Myxomycota
 - Phylum: Dictyosteliomycota
 - Phylum: Acrasiomycota
 - Phylum: Plasmodiophoromycota

The Mycetozoa (Slime Molds)

- Kingdom Mycetozoa is comprised of four phyla containing three different groups of organisms that differ in their trophic (feeding) stages
 - Myxogastrids plasmodial
 - Dictyostelids and acrasids amoeboid
 - Protostelids obligate parasites having two plasmodial stages
- Phylum Dictyosteliomycota
 - Monophyletic group of cellular slime molds
 - Best example: Dictyostelium discoideum
 - Grow and divides as unicellular, haploid amoebae
 - Swarming amoeba respond to gradients of cAMP
 - Feed on bacteria via phagocytosis
- Phylum Acrasiomyctoa
 - Polyphylogenetic group of cellular slime molds
 - Best example: Acrasis rosea
 - Feeds on bacteria by phagocytosis
 - Do not respond to cAMP; chemotactic factor is unknown
- Phylum Myxomycota
 - Plasmodial slime molds
 - Best example: Physarum polycephalum
 - Prominent feature is the multinuclear network of protoplasm that exhibits rhythmic streaming
 - Feeds by phagocytosis of bacteria
 - A mature plasmodium can form either:
 - A sclerotium under adverse conditions that can then regenerate as a plasmodium; or
 - A sporangium that bears haploid spores
- Phylum Plasmodiophoromycota
 - Obligate intracellular parasites of plants, algae, or fungi
 - Best example: "club foot" of plant roots caused by Plasmodiophora brassicae

The Chromistans

- The term 'Chromistan Fungi' is oxymoronic in that:
 - Chromists are a broadly diverse of protists containing stramenopiles (also spelled straminiples), but not true fungi
 - Phylogenetic evidence suggests a monophyletic origin quite distinct from the true fungi, most likely a red algal ancestor
- Chromists seem to share a common ancestry with alveolates (ciliates, sporozoans, dinoflagellates)

The Stramenopiles

- Stramenopiles are also known as heterokonts, referring to two types of flagella found in this group
 - Smooth (whiplash) flagellum
 - "Tinsillated" (or tinsel) flagellum
 - Contains stiff lateral hairs (mastigonemes)
 - Pulls, doesn't push, cell through the medium
- Number/kind of flagella varies among the different groups of organisms
- Stramenopiles include diatoms and kelps in addition to fungus-like microbes
- Kingdom Straminipila
 - Comprised of three fungal-like phyla
 - Hyphochytridiomycota
 - Oomycota
 - Labyrinthulomycota
 - Phylum Hyphochytridiomycota
 - Very similar in many ways to the Phylum Chytridiomycota (Kingdom Fungi [Eumycota])
 - Motile spores (zoospore) possess a single, anterior tinsel flagellum [distinguishes the hyphochytrids from the chytrids]
 - No sexual reproduction vet observed among the hyphochytrids
 - Best example: Rhizidiomyces apophysatus parasite water mold oogonia
 - Phylum Oomycota
 - Economically important fungus-like organisms that have extremely significant environmental roles in agriculture

- · Causes of the following plant/fish diseases:
 - Potato blight (Phytophthora infestans)
 - Sudden oak death (Phytophthora ramorum)
 - "Decline" diseases (*Pythium* spp.)
 - Downy mildews (*Peronospora* spp.)
 - Water molds/fish pathogens (Saprolegnia spp.)
- Greatly mimic the true fungi in many ways probably due to convergent evolution
- Possess the following plant-like features:
 - Glucan and cellulose-like cell walls (not chitin)
 - Diploid nuclei (most fungi tend to be haploid)
 - Membranes contain plant sterols (not ergosterol)
- Key features
 - Zoospores have two flagella a forward directed tinsel type and a backward directed whiplash type
 - Sexual reproduction is oogamous, i.e., the zygote develops into a thickwalled oospore that can persist in the environment [Note: oogamy can also occur in some chytrids (Eumycota)]
- Features of a oomycetous life cycle is typified by that of Phytophthora infestans
- Phylum Labyrinthulomycota
 - Commonly referred to as "net slime molds"
 - Characterized by a network of branch, anastomosing (fusing), wall-less filaments held together by a secreted polysaccharide sheath
 - Produce biflagellated zoospores
 - Anteriorly directed tinsel type
 - Posteriorly directed whiplash type
 - Most members are marine parasites

The Mycota (True Fungi)

- Traditionally, differentiated by their mode of sexual reproduction, though not exclusively
- Generally confirmed by phylogenetic analysis

- Kingdom Fungi (Mycota)
 - Phylum: Chytridiomycota (motile zoospores)
 - Phylum: Zygomycota (zygospores)
 - Phylum: Glomeromycota (typically asexual)
 - Phylum: Ascomycota (ascospores)
 - Phylum: Basidiomycota (basidiospores)
 - Form-Phylum: Deuteromycota (Fungi Imperfecti)

The Chytridiomycota

- 'Chytrids' are considered the earliest branch of the true fungi (Eumycota)
- Cell walls contain chitin and glucan
- Only true fungi that produce motile, flagellated zoospores
 - Usually single, posterior whiplash type
 - Some rumen species have multiple flagella
- Zoospore ultrastructure is taxonomically important within this phylum
- Commonly found in soils or aquatic environments, chytrids have a significant role in degrading organics
- Exhibit many of the same thallus structure types and arrangements as hyphochytrids (e.g., eucarpic; rhizoidal; endobiotic; etc.)
- A few are obligate intracellular parasites of plants, algae, and small animals (e.g., frogs)
- Very few economically important species (Synchytrium endobioticum causes potato wart disease)
- More important (and fascinating) as biological models (e.g, Allomyces)

The Zygomycota

- Five features of Phylum Zygomycota
 - Cell walls contain chitin, chitosan, and polyglucuronic acid
 - Some members typically bear multinucleate, coenocytic hyphae, i.e., without cross walls (septa; sing., septum)
 - When present, septa are simple partitions
 - Some Orders have regular septations that are flared having a centrally plugged pore
 - Produce zygospores (meiospore) via sexual reproduction (gametangial fusion)

- Asexual spores (mitospores), termed sporangiospores, form through cytoplasmic cleavage within a sac-like structure termed a sporangium
- Haploid genome
- · Importance of the zygomycetous fungi
 - Organic degraders/recyclers
 - Useful in foodstuffs/fermentations
 - Pathogens of insects/other animals
- Generalized life cycle
 - Asexual stage (anamorphic; imperfect)
 - Hyphae develop erect branches termed sporangiophores
 - A thin-walled sac (sporangium) is walled off at the tip and fills with cytoplasm containing multiple nuclei (with collumella underneath sac)
 - Cytoplasmic cleavage and separation of nuclei into walled units produces sporangiospores
 - Thin sporangial wall (peridium) breaks releasing sporangiospores
 - Cytoplasmic cleavage and separation of nuclei into walled units produces sporangiospores
 - Thin sporangial wall (peridium) breaks releasing sporangiospores
 - · Sporangiospores germinate to repeat the asexual life cycle
- The zygospore represents the teleomorphic phase (sexual; perfect form) of this phylum
- The zygospore represents the teleomorphic phase (sexual; perfect form) of this phylum
 - Results from the fusion of gametangia of heterothallic (two different mating types; designated "+" and "-") or homothallic (self fertile) strains
 - Acts as a thick-walled resting spore
 - Zygosporangium becomes thick walled to form the zygospore
 - Hyphae to the sides become empty appendages (suspensor cells)
 - Zygospore often forms ornate appendages
 - Zygospore is constitutively dormant for a time, but then germinates to produce a sporangium containing haploid sporangiospores

The Glomeromycota

- These fungi were originally placed within the Phlyum Zygomycota
 - Do not produce zygospores
 - Live as obligate, mutualisitic symbionts in >90% of all higher plants known at arbusular mycorrhizas (AM; endomycorrrhiza)
- Will not grow axenically
- Produce large, thick-walled spores in soils that germinate in the presence of a plant root
- Develop non-septate hyphae that invade the root, then form a branch, tree-like arbuscules within the root
- Help plants thrive in nutrient poor soils, especially phosphorous

The Ascomycota

- This phylum contains 75% of all fungi described to date
- Most diverse phylum being significant:
 - Decomposers
 - Agricultural pests (e.g., Dutch elm disease, powdery mildews of crops)
 - Pathogens of humans and animals
- Asexual spores (mitospores)
 - Variety of types
 - Usually not used for taxonomic purposes
 - Generally referred to as conidia
 - Tend to be haploid and dormant
- Key feature is the ascus (pl., asci) sexual reproductive cell containing meiotic products termed ascospores
- Another significant structural feature a simple septum with a central pore surrounded by Woronin bodies
- The fruiting body of these fungi, termed an ascocarp, takes on diverse forms
 - Flasked shaped perithecium
 - Cup-shaped apothecium
 - Closed structure cleistothecium
 - Embedded structure pseudothecium
 - Some ascospores are borne singly or not enclosed in a fruiting structure

- Some ascomycetous fungi grow as yeasts
 - Either budding or fission
 - Both types are capable of sexual reproduction under the appropriate conditions

The Basidiomycota

- This phylum contains 30,000 different species or about 37% of all true fungi
- Most often recognized as mushrooms and toadstools, as well as other types of fruiting bodies in nature
- Very important for their ecological and agricultural impact
- Majority are terrestrial, although some can be found in marine or freshwater environments
- Oldest confirmed basidiomycete fossil is about 290 millions years old
- Some are molds, some are yeasts, and some are dimorphic
- Features similar to those of the Ascomycota
 - Haploid somatic hyphae
 - Septate hyphae
 - Potential for hyphal anastomosis
 - Production of complex fruiting structures
 - Presence of a dikaryotic life cycle phase
 - Production of a conidial anamorph
- Key differences
 - Cell wall
 - Ascomycetes two layered
 - · Basidiomycetes multilayered
 - Septa
 - Ascomycetes
 - Hyphal forms simple with central pore surrounded by Woronin bodies
 - Yeast forms simple with micropores
 - Basidiomycetes dolipore septum
 - Basidiomycetes also form a clamp connection at each septum of a dikaryotic hypha
 - Meiospore production meiosis occurs within a specialized cell termed a basidium (pl., basidia), but the spores are borne **exogenously** on tapering outgrowths termed sterigmata (sing., sterigma)

- Sterigmata form on the surface of the basidium
- Haploid nuclei migrate into the sterigmata as the basidiospore develops
- Mature basidiospore in many fungi released through a ballistic-like method involving a hylar (or hilar) drop
- Mature basidiospore in many fungi released through a ballistic-like method involving a hylar (or hilar) drop

The Mitosporic Fungi

- Many ascomycetous fungi produce asexual (mitotic) spores (anamorphic phase), but their teleomorph phase (sexual reproduction) is absent
- Taxonomically, such fungi are placed in an artificial category variously termed Deuteromycota (or Deuteromycotina) or Fungi Imperfecti
- Due to the absence of a teleomorph, these fungi are often given a provisional name termed a "form" genus/species
- · If the teleomorph is discovered, the fungus renamed
- Example of teleomorph/anamorph dichotomy of names:
 - Anamorph Aspergillus nidulans forms mitosporically-derived conidia, therefore classified within the form-phylum Deuteromycota
 - Teleomorph Emerciella nidulans forms a cleistothecium containing ascospores, therefore classified within the Phylum Ascomycota
- Conidia are produced in a variety of ways, but never by cytoplasmic cleavage as in the Zygomycota
- Two main types of conidium development are the basis for the production for all types of conidia
 - Thallic fragmentation process
 - Blastic swelling process
- Most conidia are blastic in origin and are borne in various ways:
 - Budding
 - Extrusion of flask shaped cells termed phialides
 - Aggregation of condiophores in stalks termed synnema or coremium
 - On a pad-like surface (acervulus)
 - Within a flask-shaped structure (pycnidium)

- Taxonomic divisions of the Fungi Imperfecti truly an artificial classification scheme based solely on conidial structures
 - Hyphomycetes conidia borne on conidiophores
 - Coelomycetes conidia borne on an acervulus or within a pycnidium
 - Agonomycetes "Mycelia Sterilia" no conidia; sometimes sclerotia