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ABSTRACT

Gábor J. Székely, Advisor

The focus of this research was to explore the mathematical uses of signed measures in

Probability Theory. Two distinct areas were investigated.

The first involved exchangeability and the representation theorem of de Finetti, which

says that an infinite sequence of binary valued exchangeable random variables are mix-

tures of independent, identically distributed (i.i.d.) random variables. It is well known

that the theorem does not hold in general for finite sequences, in particular, it works only

for sequences that are nonnegatively correlated. This research proved that while for infi-

nite sequences the classical (that is, nonnegative) mixtures of i.i.d. random variables are

sufficient, with some finite sequences a signed “mixture” is needed to retain de Finetti’s

convenient representation.

Two applications of this idea were examined. One concerned Bayesian consistency, in

which it was established that a sequence of posterior distributions continues to converge

to the true value of a parameter θ under much wider assumptions than are ordinarily

supposed. The next pertained to Statistical Physics, and it was demonstrated that the

quantum statistics of Fermi-Dirac may be derived from the statistics of classical (i.e.

independent) particles by means of a signed mixture of multinomial distributions.

The second area of this research concerned infinitely divisible (ID) random variables.

The class of generalized infinitely divisible (GID) random variables was defined, and

its properties were investigated. It was submitted that under broad conditions the class

ID is significantly extended, admitting nonincreasing discrete distributions with bounded

ii
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support and continuous candidates such as the uniform distribution on [0, 1]; all of which

are known to be not divisible in the classical sense.

Additionally the class of strongly infinitely divisible (SID) distributions was in-

troduced and under a technical assumption of asymptotic negligibility it was shown that

many classical traits may be salvaged, such as nonvanishing characteristic functions with a

modified Lévy-Khintchine representation. On the other hand, the symmetry is not exact,

as displayed by a lack of closure of the SID class.
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CHAPTER 1

PRELIMINARIES

1.1 Random Variables and Expectation

Let (Ω,A, ν) be a complex (respectively signed) measure space. If ν is normalized so that

ν(Ω) = 1, then we call (Ω,A, ν) a complex (respectively signed) probability space.

A random variable is an extended real-valued A-measurable function on Ω.

Every random variable X has associated with it a complex measure νX on the Borel

subsets of the real line defined by

νX(B) = ν ◦X−1(B) = ν
(
X−1(B)

)
,

for all B ∈ B. We say that X has the distribution νX or that X is distributed according

to the complex measure νX , and we write X ∼ νX . When the random variable is understood

we will just write ν. Similarly, there exists a function of bounded variation FX , defined for

x ∈ IR by FX(x) = νX ((−∞, x]).

Of course, the random variable X has two other measures associated with it, namely

the variation measure |ν| and the normalized variation measure |ν|/‖ν‖. Sometimes it will

be necessary to refer to them explicitly. We will do so with the notation X
v∼ |ν| and

X
nv∼ |ν|/‖ν‖. Note that if X

nv∼ µ then µ is a classical probability distribution. Also, if

X ∼ ν, then we denote TVar(X) = |ν|(IR).

There is some notation to be introduced to help us with the integration operations we

will be using. For measurable f we denote the expectation of f(X) by

IEνf(X) =

∫

IR

f(x) dν(x),

1
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where the right hand side of the expression is the Lebesgue-Stieltjes integral. When the

distribution ν is clear from the context we will abbreviate to IE f(X). We notate

|IE| f(X) =

∫
f d|ν|, and ‖IE‖ f(X) =

∫
f d

( |ν|
‖ν‖

)
;

that is, |IEν | = IE|ν| and ‖IEν‖ = IE|ν|/‖ν‖. From this notation naturally follows

IP(X ∈ B) = IE1B = ν(B), |IP|(X ∈ B) = |IE|1B, and ‖IP‖(X ∈ B) = ‖IE‖1B.

Notice that if ν is a classical probability distribution then IE = |IE| = ‖IE‖ and

IP = |IP| = ‖IP‖.

It is appropriate to mention that many relevant results concerning signed measures are

proven in the appendices. A portion of them are standard and the remaining are extensions

of known properties of measures to the signed case. Where possible, the results are stated

in a form that holds for the more general complex measure; however, for this dissertation

only signed measures are needed.

Example 1.1.1 (The Generalized Bernoulli Distribution).

Perhaps the most simple example of a signed distribution is the signed analog of

the discrete Bernoulli distribution. A random variable X has a Generalized Bernoulli

distribution if

IP(X = 0) = 1− p, IP(X = 1) = p,

where p is a specified real number. We will denote this by X ∼ GBern(p). There are three

cases to consider, depending on the value of p.

Case 1. 0 ≤ p ≤ 1. This is the classical and well known Bern(p) case.

Case 2. p > 1. The variation measure is

|IP|(X = 0) = p− 1, |IP|(X = 1) = p
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with total variation 2p− 1, and the normalized variation measure is

‖IP‖(X = 0) =
p− 1

2p− 1
, ‖IP‖(X = 1) =

p

2p− 1
.

Case 3. p < 0. Here, the variation measure is

|IP|(X = 0) = 1 + |p|, |IP|(X = 1) = |p|

with total variation 2|p|+ 1, and the normalized variation measure is

‖IP‖(X = 0) =
1 + |p|
2|p|+ 1

, ‖IP‖(X = 1) =
|p|

2|p|+ 1
.

We may economize notation by denoting GBern±(p) according to whether p > 1 or

p < 0, respectively. Then we may say

If X ∼ GBern±(p), then X
nv∼ Bern

( |p|
2|p| ∓ 1

)
.

Notice that as p ranges from −∞ to 0, the quantity |p|/(2|p|+ 1) decreases from 1/2 to 0,

and as p ranges from 1 to ∞, the probability |p|/(2|p| − 1) decreases from 1 to 1/2.

Example 1.1.2 (The Generalized Poisson Distribution).

A random variable X has a Generalized Poisson distribution, denoted

X ∼ GPoi(λ), if

IP(X = k) =
λk e−λ

k!
, k = 0, 1, 2, . . .

for some specified λ ∈ IR. Of course
∑

k IP(X = k) = 1, and for λ < 0 we have

TVar(X) =
∞∑

k=0

|IP(X = k)| =
∞∑

k=0

∣∣∣∣
λk e−λ

k!

∣∣∣∣ = e−λ

∞∑

k=0

|λ|k
k!

= e2|λ|.

But then this implies that

‖IP‖(X = k) = e−2|λ| |λ|k e−λ

k!
=
|λ|k e−|λ|

k!
,

in other words, if X ∼ GPoi(λ) with λ < 0, then X
nv∼ Poi(|λ|).
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Example 1.1.3 (The Generalized Geometric Distribution).

A random variable X has a Generalized Geometric distribution, denoted

X ∼ GGeo(p), if

IP(X = k) = p(1− p)k, k = 0, 1, 2, . . .

for some specified number p, 0 < p < 2. Note that this distribution collapses to the classical

Geo(p) distribution when 0 < p < 1. The fact that
∑

k IP(X = k) = 1 follows from the

fact that the geometric series
∑

αk converges absolutely for |α| < 1. And for 1 ≤ p < 2,

we have

TVar(X) =
∞∑

k=0

|IP(X = k)| = p

∞∑

k=0

(p− 1)k =
p

1− (p− 1)
=

p

2− p
.

This of course implies that if X ∼ GGeo(p) for 1 ≤ p < 2, then X
nv∼ Geo(2− p).

Remark. The radius of convergence being 1 for the geometric series explains why we only

defined GGeo(p) for 0 < p < 2. The series simply diverges for all other p. This fact will

become significant later.

1.2 Fourier Transforms and Convolution

Definition 1.2.1. We begin by defining the Fourier-Stieltjes Transform of ν ∈ M(IR)

to be

Fν(t) = ν̂(t) =

∫

IR

e−2πitx dν(x).

Note that if dν = fdm for some f ∈ L1(m), then the above becomes

Ff(t) = f̂(t) =

∫

IR

e−2πitxf(x) dm(x),

and f̂ is called the Fourier transform of f ∈ L1(m).
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Since eitx is uniformly continuous in x it is clear that ν̂ is a bounded continuous

function and that ‖ν̂‖u ≤ ‖ν‖.

Definition 1.2.2. If µ, ν ∈ M(IR), we define their convolution µ ∗ ν ∈ M(IR) by

µ ∗ ν(E) = µ× ν(α−1(E)), where α(x, y) = x + y. In other words,

µ ∗ ν(E) =

∫∫
1E(x + y) dµ(x)dν(y).

The operation of convolution of measures corresponds to the addition of the respective

random variables. We summarize some important properties of convolution in the next

proposition.

Proposition 1.2.1 (Folland). Let µ, ν ∈ M(IR).

1. For every bounded and measurable h,

∫
h d(µ ∗ ν) =

∫∫
h(x + y) dµ(x)dν(y).

2. Convolution is commutative and associative.

3. ‖µ ∗ ν‖ ≤ ‖µ‖ ‖ν‖.

4. If dµ = fdm and dν = gdm, then d(µ ∗ ν) = (f ∗ g)dm.

5. µ̂ ∗ ν = µ̂ · ν̂.

In terms of random variables, for ν ∈ M(IR) we have the characteristic function of

X ∼ ν, denoted ϕX , defined to be ϕX(t) = IEν eitX for t ∈ IR. Clearly ν̂(t) = ϕX(−2πt).

Proposition 1.2.2. If f(t) = IEνe
itX is the characteristic function of X ∼ ν ∈ M , then

|f |2 is also a characteristic function of µ ∈ M which is real and nonnegative. If ν ∈ M±,

then so is µ.
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Proof. We expand f into its real and imaginary parts:

f(t) =

∫
(cos tx + i sin tx) d (νr(x) + iνi(x))

=

∫
cos tx dνr −

∫
sin tx dνi + i

(∫
cos tx dνi +

∫
sin tx dνr

)
,

in which case

f(t) =

∫
cos tx dνr −

∫
sin tx dνi − i

(∫
cos tx dνi +

∫
sin tx dνr

)

=

∫
(cos tx− i sin tx) d (νr(x)− iνi(x))

=

∫
e−itx dν(x),

where ν = νr − iνi ∈ M satisfies

∫
dν =

∫
dνr − i

∫
dνi = 1.

Now, let X ∼ ν and let Y ∼ ν be independent of X. Then

|f |2(t) = f(t) · f(t) = IEeitX · IEeit(−Y ) = IEeit(X−Y )

and we see that |f |2 is the characteristic function of Z = X − Y ∼ µ ∈ M . Obviously |f |2

is real and nonnegative. It is equally clear that if ν ∈ M± then ν = ν; consequently the

distribution of −Y is also in M± which implies that the distribution of Z is ultimately in

M±, as claimed.

Notation. For a complex measure ν we will write ν∗n to denote the n-fold convolution

ν ∗ ν ∗ · · · ∗ ν. In this notation,

|ν∗n| = |ν ∗ ν ∗ · · · ∗ ν| and |ν|∗n = |ν| ∗ |ν| ∗ · · · ∗ |ν|.

Similarly, we denote

IE∗nν = IEν∗n , |IE∗nν | = IE|ν∗n|, and |IEν |∗n = IE|ν|∗n .
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In terms of random variables, if X ∼ ν∗n, then we may think of X as having the form

X = X1 +X2 + · · ·+Xn, where the Xi are independent and identically distributed according

to the complex measure ν.

Proposition 1.2.3. Suppose ν ∈ M and X ∼ ν∗n. Then for any 1 ≤ p < ∞,

|IE|∗n|X|p ≤ np ‖ν‖n−1 |IE||X1|p. (1.2.1)

On the other hand, if X1 ≥ 0 then for any 0 < δ < 1,

nδ ‖ν‖n−1 |IE|Xδ
1 ≤ |IE|∗nXδ. (1.2.2)

Proof. To prove equation (1.2.1), Minkowski’s Inequality A.2.2 shows that

‖X‖p ≤
n∑

k=1

‖Xk‖p,

where we integrate with respect to the n-fold product measure |µ| × · · · × |µ|. In that case

the above becomes

(|IE|∗n|X|p)1/p ≤
n∑

k=1

(‖ν‖(n−1)|IE||Xk|p
)1/p

= ‖ν‖(n−1)/p · n · (|IE||X1|p)1/p .

Raising both sides to the pth power shows the claim.

To prove equation (1.2.2), the function f(x) = xδ is concave and for fixed ω Jensen’s

Inequality yields

Xδ
1(ω) + Xδ

2(ω) + · · ·+ Xδ
m(ω)

m
≤

(
X1(ω) + X2(ω) + · · ·+ Xm(ω)

m

)δ

.

Taking expectations on both sides with respect to |ν| × · · · × |ν| gives

1

m

m∑
i=1

|IE|Xδ
i · ‖ν‖n−1 = |IE|Xδ

1 · ‖ν‖n−1 ≤ |IE|∗nXδ

mδ
.
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Proposition 1.2.4. If ν ∈ M± and X ∼ ν∗n then for measurable f ≥ 0:

|IE∗nν |f(X) ≤ |IEν |∗nf(X).

Proof. We write

ν∗n = ν ∗ ν ∗ · · · ∗ ν

= (ν+ − ν−) ∗ (ν+ − ν−) ∗ · · · ∗ (ν+ − ν−)

=
n∑

k=0

(
n

k

)
(−1)k(ν+)n−k ∗ (ν−)k

≤
n∑

k=0

(
n

k

)
(ν+)n−k ∗ (ν−)k

= |ν| ∗ |ν| ∗ · · · ∗ |ν|

= |ν|∗n,

where the (in)equalities are meant to hold setwise. That is, for any E ∈ B we have

ν∗n(E) ≤ |ν|∗n(E) which, by virtue of Proposition A.1.1 shows that |ν∗n|(E) ≤ |ν|∗n(E)

for all E ∈ B. Thus the proposition is true when f is a nonnegative simple function, and

then for f ≥ 0 by the Monotone Convergence Theorem, since in that case we may take a

sequence of nonnegative simple functions increasing to f .

We continue the discussion of convolution with the extension of two families of random

variables that will be very important in the next chapter.

Example 1.2.1 (The Generalized Negative Binomial Distribution).

A random variable X has a Generalized Negative Binomial distribution

(denoted GNegB(r, p)) if

IP(X = k) =

(−r

k

)
(−q)kpr, k = 0, 1, 2, . . . ,
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for some specified r > 0 and 0 < p < 2. Here, q = 1− p and

(−r

k

)
=
−r(−r − 1) · · · (−r − k + 1)

k!
.

Remark. The above binomial coefficient simplifies to
(−r

k

)
(−1)k =

(
r+k−1

k

)
, and our defi-

nition matches the classical Negative Binomial distribution.

The fact that
∑

k IP(X = k) = 1 follows from the binomial series and the observation

| − q| < 1:
∞∑

k=0

(−r

k

)
(−q)kpr = pr(1− q)−r = 1.

When 1 ≤ p < 2 we get a distribution whose total variation is

∞∑

k=0

|IP(X = k)| = pr

∞∑

k=0

(−r

k

)
(−|q|)k =

(
p

1− (p− 1)

)r

=

(
p

2− p

)r

.

This calculation now shows that

if X ∼ GNegB(r, p) with r > 0 and 1 ≤ p < 2, then X
nv∼ NegB(r, 2− p).

The characteristic function of X ∼ GNegB(r, p) is

ϕX(t) =

(
p

1− qeit

)r

.

A moment’s reflection will convince us that ϕX = (ϕY )r, where Y ∼ GGeo(p); that is, X

is the convolution of “r” GGeo(p) random variables. Now, we know from Proposition 1.2.1

that when r ∈ IN we should have TVar(X) ≤ (TVar(Y ))r, but we already calculated

TVar(Y ) in Section 1.1 and found it to be TVar(Y ) = p/(2− p), therefore we actually get

equality in this case.

Example 1.2.2 (The Generalized Binomial Distribution).
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The random variable X has the Generalized Binomial distribution (denoted X ∼

GBin(n, p)) if

IP(X = k) =

(
n

k

)
pk(1− p)n−k, k = 0, 1, . . . , n,

for some n ∈ IN and p ∈ IR. The fact that
∑

k IP(X = k) = 1 is immediately implied by

the Binomial Theorem and a generalized distribution occurs when p /∈ [0, 1], in which case

TVar(X) =
n∑

k=0

|IP(X = k)| =
(

n

k

)
(|p|)k(|p| ∓ 1)n−k = (2|p| ∓ 1)n,

as p > 1 or p < 0, respectively. The characteristic function of X ∼ GBin(n, p) is ϕX(t) =

(q + peit)
n
, where q = 1 − p. We see that ϕX = (ϕY )n, where Y ∼ GBern(p); that is, X

is the convolution of “n” GBern(p) random variables. Similar to before we should have

TVar(X) ≤ (TVar(Y ))n, but in Section 1.1 it was shown that TVar(Y ) = 2|p| ∓ 1 and

again equality unexpectedly holds.

To see why, notice that although GNegB(r, p) was defined for r > 0, in fact,
∑

k IP(X =

k) = 1 for any r ∈ IR and 0 < p < 2. Even more is true:

Proposition 1.2.5. For any r < 0 and 0 < p < 2,

GNegB(r, p)
d
= GBin(|r|, 1− p−1).

Proof. Let X ∼ GNegB(r, p) with characteristic function

ϕX(t) =

(
p

1− qeit

)r

=

[
1

p
+

(
1− 1

p

)
eit

]|r|
.

The last expression is the characteristic function of a GBin(|r|, 1−p−1) random variable.

We conclude from the last proposition that GNegB and GBin random variables are in

essence only different manifestations of the same random phenomena. However, there is a
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critical difference: for any fixed r < 0, as p ranges over the entire set 0 < p < 2 the collection

of GBin random variables generated is not the entire class; only those GBin(|r|, α) for

which α < 1/2 are included. This will play a critical role in Chapter 3.

Example 1.2.3.

If X ∼ GPoi(λ) then its characteristic function is ϕX(t) = eλ(eit−1). It is immediate

that if X1 and X2 are independent GPoi(λ1), GPoi(λ2) random variables, respectively,

then

ϕX1+X2(t) = exp{(λ1 + λ2)(e
it − 1)}

showing that X1 + X2 is consequently distributed as GPoi(λ1 + λ2), just as in the classical

case. But this shows something more. It provides us with an example that strict inequality

in Proposition 1.2.1 may occur; by taking λ1 < 0 and λ2 > 0 with |λ1| > λ2 one obtains

TVar(X1 + X2) = e2|λ1+λ2| = e2(|λ1|−λ2)

< e2|λ1| · 1 = TVar(X1) · TVar(X2).

Two common features of the previous examples are that all random variables so far

have been discrete and their probabilities have been signed. It is natural to go further and

look for generalized continuous distributions; at the same time another natural question

concerns the existence of probability distributions taking complex values. In a final example

we find both: a continuous random variable whose probability density is complex.

Example 1.2.4 (The Complex Gamma Distribution).

A random variable X has a Complex Gamma distribution, denoted

X ∼ CGamma(α, β), if its probability density is of the form

fX(x) =
1

Γ(α) βα
xα−1 e−

x
β , x ∈ IR,
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for some specified complex constant α ∈ C with |α| > 0 and some real β > 0. Note that

this distribution collapses to the classical Gamma(α, β) distribution when α is real.

1.3 Relative Compactness and Helly’s Selection Principle

This section is devoted entirely to the modification of a classical result and its detailed

proof. The classical Helly-Bray Theorem asserts that for a given class of uniformly bounded

increasing functions {Fn} on IR there exists an increasing F such that Fn → F . In Appendix

B we see that Prohorov’s Theorem gives the appropriate analogue for complex measures.

The trouble is that for our purposes we need to know more about F than just existence in

order to be able to say anything useful.

As it turns out, on the real line, by modifying Helly’s Selection Principle we may select

a specific F with attractive properties and we may select in such a way to ensure that the

convergence is sufficiently strong. In some aspects it is exactly this section that provides

the underpinning for the next two chapters that follow.

Recall from Appendix B, page 98 that µα converges vaguely to µ, denoted µα
v−→ µ,

if
∫

fdµα →
∫

fdµ for all f ∈ C0(Ω).

Theorem 1.3.1. If {µn} ⊂ M(IR) is bounded and tight then there exists a complex measure

µ ∈ M(IR) and a subsequence (nj) such that µnj

v−→ µ. Further, if {µn} are signed then

by choosing wisely we may select the subsequence so that lim supj ‖µnj
‖ ≤ ‖µ‖.

This is a modification of a classical result, and its proof is long. We begin by proving

the following Lemma.

Lemma 1.3.1 (Widder [48]). Let the complex constants (am,n) and the positive number

A be such that

|am,n| ≤ A, m, n ∈ IN.
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Then there exist a sequence of integers n1 < n2 < · · · and a sequence of numbers a1, a2, . . .

such that

lim
k→∞

am,nk
= am = lim sup

k→∞
am,nk

, m ∈ IN.

Proof. Since the sequence (a1,n)∞n=1 is bounded, its limit superior, which we denote by a1,

is finite and there exists a sequence

n1
1 < n1

2 < · · · (1.3.1)

such that

lim
k→∞

a1,n1
k

= a1 = lim sup
k→∞

a1,n1
k
.

Likewise, the sequence (a2,n1
k
)∞k=1 has a limit superior so we may find integers n2

1 < n2
2 < · · ·

all contained in (1.3.1) and a number a2 such that

lim
k→∞

a2,n2
k

= a2 = lim sup
k→∞

a2,n2
k
.

Proceeding in this way we find for any positive integer m a set of integers nm
1 < nm

2 < · · ·

all included in the set nm−1
1 < nm−1

2 < · · · and a number am such that

lim
k→∞

am,nm
k

= am = lim sup
k→∞

am,nm
k
.

If now we set

nk = nk
k, k ∈ IN,

it is clear that the sequence (nk)
k→∞
k=1 is increasing and that

lim
k→∞

am,nm
k

= am = lim sup
k→∞

am,nm
k
, for all m ∈ IN.
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Let now {Fn} be the respective cumulative distribution functions of {µn}. The com-

plete statement of the theorem is proved only for signed measures, although it turns out

even for sequences of complex measures that there exists a subsequence and a complex

measure µ such that µnk

v−→ µ. For, if αn and βn are the real and imaginary parts of Fn,

respectively, the sequences (αn) and (βn) both satisfy the hypotheses of the theorem. For

a suitable sequence of integers (n
(1)
k )∞k=1 and a function α of bounded variation we would

have

lim sup
k→∞

α
n

(1)
k

(x) = α(x), x ∈ IR.

From the sequence (n
(1)
k ) we could pick another (n

(2)
k ), and we could determine a function

β of bounded variation such that

lim sup
k→∞

β
n

(2)
k

(x) = β(x), x ∈ IR.

Then the complex function F with real and imaginary parts α and β would be the func-

tion sought, as would be the subsequence (n
(2)
k )∞k=1, because the corresponding cumulative

distribution functions converge pointwise (Proposition B.1).

However, it is only in the signed case that we are able to exploit the nice proper-

ties of the positive and negative variation, so that the resulting total variations behave

appropriately. Due to the fact that the real and imaginary parts of a complex measure

are not mutually singular, it is not clear which choice of a subsequence would result in a

conveniently supported measure.

Proof of Theorem 1.3.1. To prove the theorem for the signed case we write Fn = F+
n −F−

n ,

where F+
n and F−

n are the positive and negative variation cumulative distribution functions.

Then |Fn| = F+
n + F−

n , and by hypothesis there exists a constant A such that

0 ≤ |Fn|(x) ≤ A, for all x and n.
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Arrange all of the rational numbers of IR in a sequence (rm)∞m=1 and then apply Lemma 1.3.1

to the set of numbers

am,n = F+
n (rm), m, n ∈ IN.

We thus obtain a function F+ defined at all rational points and a sequence of integers

(n
(0)
k ) such that

lim
k→∞

F+

n
(0)
k

(rm) = F+(rm) = lim sup
k

F+

n
(0)
k

(rm), m ∈ IN.

Now set for x ∈ IR

F+(x) = lim sup
k

F+

n
(0)
k

(x),

and

F+(x) = lim inf
k

F+

n
(0)
k

(x).

Then of course

F+(rm) = F+(rm) = F+(rm), m ∈ IN.

Moreover, by their definition it is clear that F+ and F+ are nondecreasing functions. Their

common points of continuity are consequently dense in IR. Let t be such a point. Then

F+(t) = F+(t), since one can find a sequence of rationals converging to t and F+ = F+ for

all those rationals; we therefore define

F+(t) = F+(t) = F+(t), for t a continuity pt. of F+ and F+.

Thus F+ has been defined at all but a countable set of points (zk)
∞
k=1, the points of discon-

tinuity of either F+ or F+. Apply Lemma 1.3.1 to the set of numbers

am,k = F+

n
(0)
k

(zm), m, k ∈ IN
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to obtain a set of integers n
(1)
1 < n

(1)
2 < · · · all included in (n

(0)
k )∞k=1 and a sequence (am)∞m=1

such that

lim
k→∞

F+

n
(1)
k

(zm) = am = lim sup
k

F+

n
(1)
k

(zm), m ∈ IN.

Complete the definition of F+ by the equations

F+(zm) = am, m ∈ IN.

We then see that

lim
k→∞

F+

n
(1)
k

(x) = F+(x) = lim sup
k

F+

n
(1)
k

(x), x ∈ IR,

that F+ is nondecreasing on IR, and that |F+(x)| ≤ A, showing that F+ is of bounded

variation.

We can use an identical argument to find a nondecreasing function F− of bounded

variation satisfying |F−(x)| ≤ A and a sub-subsequence (nk) included within (n
(1)
k ) such

that

lim
k→∞

F−
nk

(x) = F−(x) = lim sup
k

F−
nk

(x), x ∈ IR.

Now set F = F+ − F−. Clearly, F is of bounded variation, satisfies 0 ≤ |F |(x) ≤

2A for all x, and also

lim
k→∞

Fnk
(x) = F (x) = lim sup

k
Fnk

(x), x ∈ IR.

Then Proposition B.1 shows that Fnk

v−→ F , or in other words µnk

v−→ µ. We finally go

to show

lim sup
k→∞

‖µnk
‖ ≤ ‖µ‖.

Let ε > 0. By tightness, there exists a compact set K such that |µnk
|(Kc) < ε for all

k, in which case µ±nk
(Kc) < ε as well. Let rm ∈ Kc be rational. Then

F+
nk

(rm) ≥ F+
nk

(∞)− ε, for all k.
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Now take lim supk on both sides to get

F+(rm) = lim sup
k→∞

F+
nk

(rm) ≥ lim sup
k→∞

‖µ+
nk
‖ − ε,

which yields ‖µ+‖ = F+(∞) ≥ F+(rm) ≥ lim supk→∞ ‖µ+
nk
‖ − ε, that is,

‖µ+‖ ≥ lim sup
k→∞

‖µ+
nk
‖ − ε.

Since ε can be made arbitrarily small we get

‖µ+‖ ≥ lim sup
k→∞

‖µ+
nk
‖,

and by a similar argument we also get

‖µ−‖ ≥ lim sup
k→∞

‖µ−nk
‖.

But then (by boundedness of ‖µ±nk
‖)

lim sup
k→∞

‖µnk
‖ = lim sup

k

(‖µ+
nk
‖+ ‖µ−nk

‖)

≤ lim sup
k

‖µ+
nk
‖+ lim sup

k
‖µ−nk

‖

≤ ‖µ+‖+ ‖µ−‖ (from above)

= ‖µ‖.
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CHAPTER 2

GENERALIZED INFINITE DIVISIBILITY

2.1 Definitions and Examples

Definition 2.1.1. A probability distribution ν is said to be generalized infinitely divis-

ible (GID) if for each n ∈ IN there exists a normalized signed distribution ν(n) ∈ M±(IR)

such that

ν = ν(n) ∗ ν(n) ∗ · · · ∗ ν(n)︸ ︷︷ ︸
n factors

.

Equivalently, ν̂ is GID if for each n ∈ IN there exists a normalized signed measure

ν(n) ∈ M± with Fourier-Stieltjes Transform ν̂(n) such that

ν̂ = (ν̂(n))n.

In terms of random variables this means, for each n ≥ 1, in a suitable finite signed

measure space there exist random variables X and Xn,j , 1 ≤ j ≤ n, such that X has

characteristic function ν̂, Xn,j has characteristic function ν̂(n), and

X =
n∑

j=1

Xn,j.

X is thus “divisible” into n independent and identically distributed parts, for each n ∈ IN.

We may speak of a distribution, a Fourier-Stieltjes transform, or a random variable

being GID interchangeably. The facet of GID to which we are referring will be stated

explicitly in places where it is not immediately clear from the context.

Notation. If ν is GID and n ∈ IN we write X(n) for the nth factor of X, i.e. the

random variable distributed according to the signed measure ν(n). In this notation, X is

18
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GID if and only if for each n ∈ IN one can write X = X
(n)
1 + X

(n)
2 + · · · + X

(n)
n , where

X
(n)
i , i = 1, 2, . . . , n are i.i.d. according to some normalized signed distribution ν(n).

Example 2.1.1 (GPoi(λ)).

We saw in Chapter 1, Example 1.2.3 that for a random variable X ∼ GPoi(λ) it

suffices to take X(n) ∼ GPoi(λ/n), which satisfies ‖ν(n)‖ = e2|λ|/n < ∞.

Example 2.1.2 (GNegB(r, p)).

Notice for all r > 0 and 0 < p < 2 we may take X(n) ∼ GNegB(r/n, p). The classical

ID case is 0 < p < 1. When 1 ≤ p < 2, it follows from our calculations in Chapter 1 that

‖ν(n)‖ = [p/(2− p)]r/n < ∞.

Example 2.1.3 (GBern(q), q ≤ 1/2).

It is easy to see that X ∼ GBern(1/2) has characteristic function φ(t) = (1 + eit)/2

with nth root

[φ(t)]1/n = 2−1/n

∞∑

k=0

(
1/n

k

)
eitk.

The distribution { 2−1/n
(
1/n
k

)
: k = 0, 1, . . . } is absolutely summable with sum 1. For the

remainder we may use the work that we did in Chapter 1, Section 1.2. Due to Proposi-

tion 1.2.5, when q < 1/2 this is merely the claim that GNegB(r, p) is GID for −1 < r < 0

and 0 < p < 2. Notice first that
(−r

0

)
= 1 and

(−r

k

)
is





> 0, if k is odd,

< 0, if k is even.

Case 1. 0 < p < 1. Then q = 1− p > 0 and IP(X = 0) =
(−r

0

)
(−q)0 pr > 0 with

IP(X = k) =

(−r

k

)
(−q)k pr being





< 0, if k is odd,

< 0, if k is even.
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Therefore |IP(X = k)| = −IP(X = k) for k ≥ 1. We may now say that when −1 < r < 0

and 0 < p < 1:

TVar(GNegB(r, p)) =
∞∑

k=0

|IP(X = k)|

= IP(X = 0)−
∞∑

k=1

(−r

k

)
(−q)kpr

= pr −
( ∞∑

k=0

(−r

k

)
(−q)kpr − pr

)

= 2pr − 1.

This shows that ‖ν(n)‖ = 2pr/n − 1 < ∞.

Case 2. 1 ≤ p < 2. Then q ≤ 0, IP(X = 0) > 0, and

IP(X = k) =

(−r

k

)
(−q)k pr is





> 0, if k is odd,

< 0, if k is even.

Therefore

|IP(X = k)| =





IP(X = k), if k is odd,

−IP(X = k), if k is even.

We may now say that when −1 < r < 0 and 1 ≤ p < 2 we have

TVar(GNegB(r, p)) =
∞∑

k=0

|IP(X = k)|

= IP(X = 0) +
∞∑

k=1

IP(X = k)(−1)k+1

= pr − pr

∞∑

k=1

(−r

k

)
qk

= pr − pr

[
1

(1 + q)r
− 1

]

= 2pr −
(

p

2− p

)r

This shows

‖ν(n)‖ = 2pr/n −
(

p

2− p

)r/n

< ∞.
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We therefore conclude that the class GBern(q), q ≤ 1/2 is GID, as claimed.

2.2 The Uniform(0,1) Distribution

In contrast to the previous section where all GID random variables were discrete, it is

in this section that a purely continuous GID random variable is encountered for the first

time.

Theorem 2.2.1. The Uniform(0, 1) distribution is GID.

It is well known (see O’Brien and Steutel [38] or Sato [42]) that the Unif(0,1) distri-

bution is not classically ID, a fact perhaps most quickly implied by the random variables

bounded support. Thus any factor of the uniform is necessarily signed.

We will motivate its divisibility merely by displaying the characteristic function of its

nth factor. Since essentially the same calculation works for the more general αth factor,

where α > 1 is real, that is what is shown below.

(∫
eitx 1(0,1)(x) dx

)1/α

=

(
eit − 1

it

)1/α

=

(
1

−it

)1/α ∞∑

k=0

(
1/α

k

) (−eit
)k

=
∞∑

k=0

(
1/α

k

)
(−1)keitk

∫ ∞

0

1

Γ(1/α)
u1/α−1e

−u
(1/−it) du

=
∞∑

k=0

(
1/α

k

)
(−1)keitk

∫ ∞

0

eitu u1/α−1

Γ(1/α)
du

=
∞∑

k=0

(
1/α

k

)
(−1)k

∫ ∞

k

eitx (x− k)1/α−1

Γ(1/α)
dx

=

∫ ∞

0

eitx

∞∑

k=0

(
1/α

k

)
(−1)k (x− k)1/α−1

Γ(1/α)
1(k,∞)(x) dx

=

∫ ∞

0

eitxfα(x) dx,
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where

fα(x) =
∞∑

k=0

(
1/α

k

)
(−1)k 1

Γ(1/α)
(x− k)1/α−11(k,∞)(x), x > 0.

We have thus found the p.d.f. of the αth factor of the Unif(0,1) distribution. It is not even

slightly obvious that fα ∈ L1 but, remarkably, it is. This is what is proved next.

Theorem 2.2.2 (G.J.Székely). For all a > 0,

Γ(a)ua(x) =

bxc∑

k=0

(−1)k

(
a

k

)
(x− k)a−1 , x > 0,

is in L1.

We will need several auxiliary lemmas before we are able to prove this theorem.

Throughout we will use the following conventions: for 0 < a ≤ 1/2 let

ak = (−1)k−1

(
a

k

)
, bk = (−1)k

(−a

k

)
, k = 0, 1, 2, . . .

The first lemma concerns finding the asymptotic behavior of the above defined con-

stants ak and bk.

Lemma 2.2.1.

ak =
a Γ(k − a)

k! Γ(1− a)
=

a

Γ(1− a)

1

ka+1
(1 + O(1/k)) ,

and

bk =
Γ(k + a)

k! Γ(a)
=

1

Γ(a)

1

k1−a
(1 + O(1/k)) .

Proof. We prove the lemma for the case of ak, the case for bk being remarkably similar.

The first equality is true because

(−1)k−1

(
a

k

)
=

(−1)k−1Γ(a + 1)

k!Γ(a− k + 1)
=

a

k!

(
(−1)k−1Γ(a)

Γ(a− (k − 1))

)
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and

(−1)k−1Γ(a)

Γ(a− (k − 1))
= (−1)k−1(a− 1)(a− 2) · · · (a− (k − 1))

= (k − 1− a)(k − 2− a) · · · (1− a) · Γ(1− a)

Γ(1− a)

=
Γ(k − a)

Γ(1− a)
.

The second equality is true from the fact that

Γ(k − a)

Γ(k + 1)
=

1

ka+1
(1 + O(1/k)) ,

which is evident from the representation

Γ(n + 1) =
(n

e

)n √
2πn eµ(n), where 1

12n+1
< µ(n) < 1

12n
,

(see Feller [22], González [28], or Robbins [40]) since

Γ(k − a)

Γ(k + 1)
=

(
k−a−1

e

)k−a−1 √
2π(k − a− 1) eµ(k−a−1)

(
k
e

)k √
2πk eµ(k)

≤ (k − a− 1)k−a−1/2

kk+1/2

ek

ek−a−1
exp

{
1

12(k − a− 1)
− 1

12k + 1

}

=

(
1− a + 1

k

)k
ea+1

k1/2 (k − a− 1)a+1/2
exp

{
12(a + 1) + 1

122(k2 − (a + 1)k)

}

≤ 1

k1/2 (k − a− 1)a+1/2
exp

{
12(a + 1) + 1

122(k2 − (a + 1)k)

}
.

The equality now follows because for all c, d > 0,

exp

{
c

k2 − dk

}
= 1 + o(1/k).

As a next step we find an identity for the convolution of the ak and bk sequences.

Lemma 2.2.2.
n∑

k=0

akbn+1−k = bn+1 − an+1, n ≥ 0.
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Proof. Consider the functions G±a(z) = (1− z)±a on |z| < 1, which are analytic and have

the power series representation

Ga(z) = −
∞∑

k=0

ak zk, G−a(z) =
∞∑

k=0

bk zk.

Furthermore, notice that there exist coefficients (ck) such that the power series representa-

tion

Ga(z) ·G−a(z) =
∞∑

k=0

ck zk = −(1− z)a(1− z)−a = −1

holds for any |z| < 1 . This of course implies that for all n ≥ 0 the coefficients cn+1 are

zero, which by the Cauchy rule for multiplying series means

cn+1 :=
n+1∑

k=0

akbn+1−k =
n∑

k=0

akbn+1−k + (−1)bn+1 + an+1(1) = 0,

and thus
n∑

k=0

akbn+1−k = bn+1 − an+1, n ≥ 0.

Last we investigate the asymptotic formulas concerning the convolution of the ak

sequence wit the more tractable sequence (n + 1− k)a−1.

Lemma 2.2.3.

n∑

k=1

ak(n + 1− k)a−1 = Γ(a)
n∑

k=1

akbn+1−k + O

(
n∑

k=1

1

ka+1(n + 1− k)2−a

)

= Γ(a)(bn+1 − an+1) + O
(
n−a−1 ∨ na−2

)

= (n + 1)a−1 + O
(
n−a−1 ∨ na−2

)
.

Proof. First we show

ak(n + 1− k)a−1 = Γ(a)akbn+1−k + O

(
1

ka+1(n + 1− k)2−a

)
.
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This follows from Lemma 2.2.1 because then ak[(n + 1− k)a−1 − Γ(a)bn+1−k] is

= ak

[
(n + 1− k)a−1 −

(
1

(n + 1− k)1−a
(1 + O(

1

n + 1− k
))

)]

=
1

k1+a

(
1 + O(

1

k
)

)[
O(

1

(n + 1− k)2−a
)

]

= O

(
1

k1+a(n + 1− k)2−a

)
+ O

(
1

k2+a(n + 1− k)2−a

)

= O

(
1

k1+a(n + 1− k)2−a

)
.

Now sum over k to get

n∑

k=1

ak(n + 1− k)a−1 = Γ(a)
n∑

k=1

akbn+1−k + O

(
n∑

k=1

1

ka+1(n + 1− k)2−a

)
.

Then Lemma 2.2.2 gives that the right hand side above is just

Γ(a)(bn+1 − an+1) + O

(
n∑

k=1

1

ka+1(n + 1− k)2−a

)
.

But in fact,
n∑

k=1

1

ka+1

1

(n + 1− k)2−a
= O(n−a−1).

To see this consider the related integral

∫ n

1

1

x1+a

1

(n + 1− x)2−a
dx

which after some algebra and a variable change is

∫ n
n+1
1

n+1

u−a−1(1− u)(a−1)−1du

(n + 1)2
.

This last expression is indeterminate of the form∞/∞ because the numerator is a truncated

Beta integral
∫

xα−1(1− x)β−1dx which diverges if α < 0, β < 0. Then L’Hospital’s Rule

shows that the limit as n →∞ of the above is

lim
n→∞

d
dn

∫ n
n+1
1

n+1

u−a−1(1− u)(a−1)−1du

2(n + 1)
,
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and it suffices to show that the derivative in the numerator is O(n−a). This follows perhaps

most quickly from Leibnitz’ Rule A.3.3, which gives the derivative to be

[(
n

n + 1

)−(a+1) (
1− n

n + 1

)a−2

−
(

1

n + 1

)−(a+1) (
1− n

n + 1

)a−2

· (−1)

]
1

(n + 1)2

=
n + 1

n1+a
− n + 1

n2−a
= (n + 1)

(
n1−2a − 1

n2−a

)
= O(n−a).

We may therefore write the displayed quantity of interest above as being

= Γ(a)(bn+1 − an+1) + O
(

n−a−1 ∨ na−2
)
,

and we claim that this last expression is (n + 1)a−1 + O(n−a−1 ∨ na−2). This is easily seen

by using Lemma 2.2.1 and calculating Γ(a)(bn+1 − an+1) to be

= Γ(a)

(
1

Γ(a)(n + 1)1−a
− a

Γ(1− a)(n + 1)1+a

) (
1 + O(

1

n + 1
)

)

∝ 1

(n + 1)1−a
+ O

(
1

(n + 1)2−a

)
+

1

(n + 1)a+1
+ O

(
1

(n + 1)a+2

)
.

Looking above we see that the second and fourth terms are O(na−2), and the third is

O(n−a−1) as claimed; the lemma is proved.

With all of the technical machinery established in the last three lemmas it is now

possible to achieve the ultimate goal of showing that the density of the Uniform(0,1)’s

factors is in fact integrable. We now go to prove Theorem 2.2.1.

Proof of the Theorem. It is sufficient to prove the theorem for 0 < a ≤ 1/2. In this case

Γ(a)ua(x) = xa−1 −
bxc∑

k=1

ak(x− k)a−1 , x > 0,

where ak is as defined before Lemma 2.2.1, with

∞∑

k=1

ak =
∞∑

k=1

(
a

k

)
(−1)k−1 = −[ (1− 1)a − 1] = 1.
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Although Γ(a)ua(x) was already split into the difference of two positive functions, the

terms were not in L1. We need one more step. Let n < x < n + 1, i.e. n = bxc. Then

Γ(a)ua(x) = g(x)− h(x), where

g(x) = xa−1

(
1−

n∑

k=1

ak

(
n + 1− k

n + 1

)a−1
)

,

h(x) =
n∑

k=1

ak

(
(x− k)a−1 −

(
n + 1− k

n + 1
x

)a−1
)

.

These functions turn out to be in L1. (They are also nonnegative although this is not

quite clear in case of g(x), and we are not going to use this property.)

On the one hand,

0 ≤ (x− k)a−1 −
(

n + 1− k

n + 1
x

)a−1

≤ (1− a)

[
n + 1− k

n + 1
x− (x− k)

]
(x− k)a−2

≤ k(n + 1− x)

n + 1
(x− k)a−2 ≤ (x− k)a−2 ,

hence

(x− k)a−1 −
(

n + 1− k

n + 1
x

)a−1

≤ (x− k)a−1 ∧ (x− k)a−2.

Thus

∫ ∞

0

h(x) dx =
∞∑

n=1

∫ n+1

n

n∑

k=1

ak

(
(x− k)a−1 −

(
n + 1− k

n + 1
x

)a−1
)

dx

=
∞∑

k=1

ak

∞∑

n=k

∫ n+1

n

(
(x− k)a−1 −

(
n + 1− k

n + 1
x

)a−1
)

dx,

where the interchange of the sums is justified because all of the terms are nonnegative.
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Continuing,

=
n∑

k=1

ak

∫ ∞

k

(
(x− k)a−1 −

(
n + 1− k

n + 1
x

)a−1
)

dx

≤
n∑

k=1

ak

∫ ∞

k

(x− k)a−1 ∧ (x− k)a−2 dx

=

(
n∑

k=1

ak

) ∫ ∞

0

ua−1 ∧ ua−2 du

= 1 ·
∫ 1

0

ua−1 du +

∫ ∞

1

ua−2 du < ∞,

and therefore h ∈ L1. On the other hand, we define bk as above and use Lemmas 2.2.1,

2.2.2, and 2.2.3 to get the equality

n∑

k=1

ak(n + 1− k)a−1 = (n + 1)a−1 + O
(
n−a−1 ∨ na−2

)
.

This means

∫ ∞

0

|g(x)| dx =
∞∑

n=0

∫ n+1

n

xa−1

∣∣∣∣∣1−
n∑

k=1

ak

(
n + 1− k

n + 1

)a−1
∣∣∣∣∣ dx,

and

∣∣∣∣∣1−
n∑

k=1

ak

(
n + 1− k

n + 1

)a−1
∣∣∣∣∣ =

∣∣∣∣∣1−
1

(n + 1)a

n∑

k=1

ak(n + 1− k)a−1

∣∣∣∣∣

=

∣∣∣∣1−
1

(n + 1)a

[
(n + 1)a+1 + O(n−a−1 ∨ na−2)

] ∣∣∣∣

= O

(
n−a−1

(n + 1)a−1
∨ na−2

(n + 1)a−1

)

= O(n−2a ∨ n−1).
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Finally

∫ ∞

0

|g(x)| dx ≤
∞∑

n=0

∫ n+1

n

xa−1 O(n−2a ∨ n−1) dx

=
∞∑

n=0

O(n−2a ∨ n−1)

∫ n+1

n

xa−1 dx

≤
∞∑

n=0

O(n−2a ∨ n−1) · na−1

=
∞∑

n=0

O(n−(1+a) ∨ n−2+a) < ∞.

Therefore ua = h + g is in L1 as desired.

As a result of the last theorem we see that for each k there exists an fk ∈ L1 such that

(∫
eitx1(0,1)(x) dx

)1/k

=

∫
eitxfk(x) dx

and we conclude that the Uniform(0,1) distribution is GID.

2.3 Székely’s Discrete Convex Theorem

We saw in the last section that the Unif(0,1) distribution is GID. And this fact is in no

way isolated; there are very many GID distributions, as the next theorem due to Gábor J.

Székely reveals. The interpretation of this theorem is quite startling: in fact, all discrete

distributions with nonincreasing probabilities on the integers 0, 1, . . . , N for some N < ∞

are GID!

Theorem 2.3.1 (G. J. Székely[44]). If p0 ≥ p1 ≥ · · · ≥ pN > 0 satisfy
∑N

j=0 pj = 1,

then for each k ∈ IN there exists a sequence (a
(k)
j )∞j=0 of real numbers with

∞∑
j=0

|a(k)
j | < ∞ and

∞∑
j=0

a
(k)
j = 1

such that (
N∑

j=0

pj eitj

)1/k

=
∞∑

j=0

a
(k)
j eitj, t ∈ IR.
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Proof. Let G(z) =
∑N

j=0 pjz
j. If |z| ≤ 1, then

|(1− z)G(z)| = |p0 −
N∑

j=1

(pj−1 − pj)z
j − pNzN+1| ≥

p0 −
∣∣∣∣∣

N∑
j=0

(pj − pj+1)|z|j + pN |z|N+1

∣∣∣∣∣ ≥ p0 − |
N∑

j=0

(pj − pj+1) + pN | = 0,

with equality iff |z| = 1 and the points (pj − pj+1)z
j, j = 0, 1, . . . , N − 1, pNzN+1 are on

the real line. If the greatest common divisor of the j’s for which pj−1 − pj 6= 0 is d, then

G(z) = (1 + z + · · ·+ zd−1)G∗(zd),

where every zero of G∗ has modulus strictly bigger than 1. Thus the radius of convergence

of G∗’s associated power series is strictly bigger than 1, hence [G∗(z)]1/k is absolutely

convergent at z = 1 for k = 2, 3, . . .. What remains to be proved is that (1 + z + · · · +

zd−1)1/k = (1− zd)1/k(1− z)−1/k is also absolutely convergent for z = 1. This follows from

the observation that
∑∞

j=0 |
(

α
j

)| < ∞ for all 0 < |α| < 1, e.g. for α = ±1/2,±1/3, . . ..

We see therefore that every nonincreasing probability distribution with bounded sup-

port is GID. However, the assumption of bounded support, while not obviously necessary,

turns out to be quite important. In the next chapter this problem will be more closely

examined.

2.4 Denseness of GID

According to Theorem 2.3.1, every nonincreasing discrete probability distribution on a

finite subset of the nonnegative integers is GID. The next question would be whether

there is an analogue for the continuous distributions, and in fact, there is. However, the

analogy is not exact, to be made precise below.
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We denote by C+ the set of all probability distributions on IR+ that are concave, that

is, all cumulative distribution functions F for which

F (p x + (1− p) y) ≥ pF (x) + (1− p) F (y), for all x, y ≥ 0 and 0 < p < 1.

Proposition 2.4.1. The class GID is dense in C+ under the topology of total variation,

and hence under the weak topology. That is, given ε > 0 and a distribution function F ∈ C+

there exists G that is GID such that ‖F −G‖ < ε.

Proof. Given a distribution function F ∈ C+ on [0,∞), define f : (0,∞) → IR by

f(x) =
F ′
−(x) + F ′

+(x)

2
, x > 0,

where F ′
± is the right (resp. left) limiting difference quotient. Note that from concavity of

F follows:

1. F is continuous except possibly at x = 0,

2. f is defined and finite at each point,

3. f ≥ 0 is nonincreasing,

4. f has at most countably many points of discontinuity.

Together these considerations imply that f is Riemann integrable on [0,M ] for any M .

Given ε > 0 select M ∈ IN such that F (M) > 1− ε/2, and let δ > 0 be so small that

for any partition P of [0,M ] with mesh(P ) < δ we have

|S(f, P )−
∫ M

0

f(x) dx| < ε/2

where S(f, P ) is a Riemann sum of f with respect to the partition P . Lastly, let m ∈ IN

be such that 1/m < δ and set N = M ·m.
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Define

pk =





f
(

k+1
m

)
, if k = 0, 1, . . . , N − 1,

0, if k = N,N + 1, . . ..

and

g(x) =
N−1∑

k=0

pk 1( k
m

, k+1
m

](x), x ≥ 0.

Then
∫ |f − g| < ε. Furthermore,

∫
eitxg(x) dx =

N−1∑

k=0

pk

∫ k+1
m

k
m

eitx dx

=
N−1∑

k=0

pk
1

it

(
eit k+1

m − eit k
m

)

=
ei t

m − 1

i(t/m)

N−1∑

k=0

pk

m
ei t

m
k

= ϕU

(
t

m

)
ϕD

(
t

m

)
,

where ϕU is the characteristic function of a Unif(0,1) distribution and ϕD is the char-

acteristic function of a discrete measure placing mass p0 ≥ p1 ≥ · · · ≥ pN−1 > 0 at

k = 0, 1, . . . , N −1, respectively. But we know that ϕU is GID from Theorem 2.2.1 and we

know ϕD is GID from Theorem 2.3.1; and g is merely the convolution of these two GID

random variables, hence also GID.

The only remaining detail is to note that
∫ |f−g| = 2‖F−G‖ by Scheffé’s Lemma A.2.1,

and we conclude that GID is dense in C+.
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CHAPTER 3

STRONG INFINITE DIVISIBILITY

3.1 Definitions, Examples, and First Properties

The definition of the class GID is relaxed enough to allow all sorts of unexpected and

pathological behavior from its members. The trouble arises from the lack of structure in a

GID random variable’s infinitesimal factors; their variation may increase without bound,

or mass may “escape to infinity” due to the cancellation of the probabilities involved. One

is thus motivated to find mild conditions to impose on its composite pieces that permit new

and interesting properties, and yet preserve some of the intuition one already has about

classical ID distributions. To that end we define the following subclass of GID:

Definition 3.1.1. We say that a GID normalized signed distribution, characteristic func-

tion, or random variable X ∼ ν is strongly infinitely divisible (SID) if there exists

δ > 0 such that

sup
n
|IE| (1 + |X(n)|δ) < ∞.

Otherwise we say X is weakly infinitely divisible (WID).

As a first step in trying to qualitatively understand the properties implied by the

above condition we look at some examples of SID random variables in the attempt to

obtain some intuition.

Example 3.1.1 (GPoi(λ)).

In Chapter 2 it was shown that a GPoi(λ) random variable X is GID, with X(n) ∼

33
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GPoi(λ/n). That implies

|IE|1 = ‖ν(n)‖ = e2|λ|/n and |IE||X(n)| = e2|λ|/n |λ|
n

whose sum is bounded in n, and thus GPoi is SID.

Example 3.1.2 (GNegB(r, p)).

It is known from Chapter 2 that for all r > 0 and 0 < p < 2, X ∼ GNegB(r, p) is an

element of GID, with X(n) ∼ GNegB(r/n, p). The classical ID case is 0 < p < 1, where

the moment condition is trivially satisfied because IEX(n) = rq/np. And when 1 ≤ p < 2,

recall that ‖ν(n)‖ = [p/(2− p)]r/n and X(n) nv∼ NegB(r/n, 2− p), implying

|IE||X(n)| = ‖ν(n)‖ ‖IE‖|X(n)| =
(

p

2− p

)r/n

· r(p− 1)

n(2− p)
,

which is bounded in n.

Example 3.1.3 (GBern(p), p < 1/2).

One may now take full advantage of the work that was done in Chapters 1 and 2.

From Proposition 1.2.5 it suffices to demonstrate that GNegB(r, p) is SID for −1 < r < 0

and 0 < p < 2; membership in GID has already been established in Chapter 2. In the

spirit of the argument there, two cases will be considered.

Case 1. 0 < p < 1. Earlier it was seen that ‖ν(n)‖ = 2pr/n − 1 which is of course

bounded in n. To finish, calculate

|IE||X(n)| =
∞∑

k=0

k |IP(X(n) = k)|

= −
∞∑

k=1

k

(−r/n

k

)
(−q)kpr

= −IEX(n) =
|r|q
np

.
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This is also bounded in n and this case is thus SID.

Case 2. 1 ≤ p < 2. From before

‖ν(n)‖ = 2pr/n −
(

p

2− p

)r/n

which is of course bounded in n. Lastly

|IE||X(n)| =
∞∑

k=0

k |IP(X(n) = k)|

= − pr/n

(2− p)r/n

∞∑

k=0

k

(−r/n

k

)
(−(p− 1))k(2− p)r/n

= −
(

p

2− p

)r/n
r(p− 1)

n(2− p)

=

(
p

2− p

)r/n |r|(p− 1)

n(2− p)
,

and because this is bounded in n, the class GBern(p), p < 1/2 is SID, as claimed.

It might seem that the restrictions necessary to be a member of SID are too stringent

and its only constituents are trivial textbook examples; however, as the next theorem shows,

strongly infinitely divisible distributions are prevalent and quite easy to construct.

Theorem 3.1.1. If µ ∈ M±(IR) puts nonnegative mass at 0 and is such that |IE||X|p < ∞

for some 1 ≤ p < ∞, then

γ̂(t) = exp {λ(µ̂(t)− 1)}

is an SID characteristic function of some γ ∈ M± for each λ ∈ IR. Furthermore, γ satisfies

‖γ(m)‖ ≤ exp

{ |λ|
m

(‖µ‖ ∓ 1)

}
and

|IEγ||X(m)| ≤ exp

{ |λ|
m

(‖µ‖ ∓ 1)

}
· |λ|

m
· |IEµ||X|

for each m ∈ IN according to whether λ is positive or negative, respectively.
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Remark. A distribution of the above form is called Generalized Compound Poisson,

denoted GCP (λ, µ). In one sense this statement extends the classical Lévy’s Theorem: the

above is an infinitely divisible characteristic function when µ ∈ M+ and λ ≥ 0. However,

notice that in the more general setting an additional moment restriction is used, so the

extension is not entirely direct.

Proof. In the trivial case λ = 0 the function f is identically 1 and the corresponding

degenerate random variable at 0 is clearly SID, for any µ. Write P and N for the Hahn

Decomposition of Ω into µ’s positive and negative sets, respectively, and let µ = µ+ − µ−

be the corresponding Jordan Decomposition of µ.

For λ 6= 0 define

νn =
λ

n
· µ +

(
1− λ

n

)
· 10 =

λ

n
µ+ +

(
1− λ

n

)
10 − λ

n
µ−,

where 10 is the point mass at 0.

Case 1. λ > 0. For 0 /∈ E ⊂ P and 0 /∈ F ⊂ N ,

νn(E) =
λ

n
µ+(E) > 0, νn(F ) = −λ

n
µ−(F ) < 0,

and

νn({0}) =
λ

n
µ+({0}) +

(
1− λ

n

)
≥ 0, for n ≥ λ.

This means that for all n sufficiently large,

νn =
λ

n
µ+ +

(
1− λ

n

)
10 − λ

n
µ−,

|νn| =
λ

n
µ+ +

(
1− λ

n

)
10 +

λ

n
µ− =

λ

n
|µ|+

(
1− λ

n

)
10,

‖νn‖ =
λ

n
‖µ‖+

(
1− λ

n

)
=

(
1 +

λ(‖µ‖ − 1)

n

)
,

and

|IEνn ||X|p =
λ

n
|IEµ||X|p.
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Case 2. λ < 0. One may repeat the above procedure and after similar calculations

observe that for all n sufficiently large, that is, for λ < 0 and n ≥ |λ|(µ+({0})− 1),

νn =
|λ|
n

µ− +

(
1 +

|λ|
n

)
10 − |λ|

n
µ−,

|νn| =
|λ|
n
|µ|+

(
1 +

|λ|
n

)
10,

‖νn‖ =

(
1 +

|λ|(‖µ‖+ 1)

n

)
,

and

|IEνn ||X|p =
|λ|
n
|IEµ||X|p.

From the calculations for the two cases it is clear that the characteristic function of

νn is

ν̂n =
λ

n
µ̂ +

(
1− λ

n

)
= 1 +

λ(µ̂− 1)

n

and so its nth power is a characteristic function as well. As n →∞,

ν̂∗nn =

(
1 +

λ(µ̂− 1)

n

)n

−→ exp {λ(µ̂− 1)} ,

thus the characteristic functions converge pointwise; it remains to verify boundedness and

tightness. Owing to the above calculations and Proposition 1.2.1 one may say that the

variation of ν∗nn when λ is positive (resp. negative) is at most

n∏
i=1

‖νn‖ =

(
1 +

|λ|(‖µ‖ ∓ 1)

n

)n

.

But this last bound increases as n → ∞ to exp{λ(‖µ‖ ∓ 1)}, and consequently {ν∗nn } is

bounded.

One may use Proposition 1.2.4 and equation (1.2.1) in Proposition 1.2.3 to assert

|IE∗nν ||X|r ≤ |IEν |∗n|X|r ≤ nr‖νn‖n−1|IEνn||X|r,
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for any 1 ≤ r < ∞. Take r = 1 and use the above calculations to see that the right hand

side of the last expression is (as λ is pos., neg., respectively)

= n ·
(

1 +
|λ|(‖µ‖ ∓ 1)

n

)n−1 |λ|
n
· |IEµ||X|

=

(
1 +

|λ|(‖µ‖ ∓ 1)

n

)n−1

|λ| · |IEµ||X|

≤ exp{|λ|(‖µ‖ ∓ 1)} · |λ| · |IEµ||X|.

Therefore by Proposition B.5 it is established that {ν∗nn } is tight and Theorem B.4 guar-

antees that there exists a signed measure γ ∈ M± such that

γ̂ = exp {λ(µ̂− 1)} , as desired.

It remains to be seen that γ is SID. It is clear that since exp{λ(µ̂− 1)} is a characteristic

function for all λ ∈ IR, then

(γ̂)1/k = exp

{
λ

k
(µ̂− 1)

}

is also a characteristic function for all k, and so γ is GID. And it is known from Proposi-

tion B.2 that

‖γ(m)‖ ≤ lim
n→∞

‖ν∗nn ‖ ≤ lim
n→∞

(
1 +

|λ|(‖µ‖ ∓ 1)

mn

)n

= exp

{ |λ|
m

(‖µ‖ ∓ 1)

}
.

Lastly,

|IE||X(m)| ≤ exp

{ |λ|
m

(‖µ‖ ∓ 1)

}
· |λ|

m
· |IEµ||X|,

which shows

sup
m
|IE| (1 + |X(m)|) ≤ exp{|λ|(‖µ‖ ∓ 1)} (1 + |λ| · |IEµ||X|) < ∞.

Therefore, γ is SID, as desired.

Example.
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The GPoi(λ) class is a good example of characteristic functions that have the above

mentioned form; indeed, ϕ(t) = exp {λ(eit − 1)} is such a characteristic function with µ

being the measure putting unit mass at the point x = 1. Notice in this case that equality

holds with ‖γ(m)‖ and |IEγ||X(m)|, another way in which the GPoi(λ) class is special.

It was suggested at the beginning of the section that the defining property of SID

should impose some structure on a GID random variable’s infinitesimal summands. This

notion is made precise in the following proposition.

Proposition 3.1.1. If X is SID, then {X(m) : m ∈ IN} is bounded and tight.

Proof. For X that is SID let

C = sup
n
|IE| (1 + |X(n)|δ) < ∞.

Then

sup
n
|IE|1 = sup

n
‖µ(n)‖ ≤ C

shows that {µ(n)} is bounded and

sup
n
|IE||X(n)|δ ≤ C

shows that {µ(n)} is tight by Proposition B.5.

Now the tools are available to prove a familiar (and useful) property of classical in-

finitely divisible distributions, which will show that the SID class preserves at least some

of the classical intuition. The proof is similar to the proof in the classical case.

Theorem 3.1.2. An SID characteristic function never vanishes.

Proof. Let f = µ̂ and fn = µ̂(n) be the respective characteristic functions of the SID

random variable and its nth factor. Then Proposition 3.1.1 shows that {µ(k) : k ∈ IN} is
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bounded (by say, M) and tight. Now write

g = |f |2, gn = |fn|2.

These are characteristic functions of signed measures by Proposition 1.2.2, are real and

positive, are bounded (by M2), and tight (Proposition B.6). Notice that for all t ∈ IR,

gn(t) = [g(t)]1/n.

But 0 ≤ g(t) ≤ M2, hence limn→∞[g(t)]1/n is 0 or 1 according as g(t) = 0 or g(t) 6= 0. Thus

limn→∞ gn(t) exists for all t, and the limit function, say h(t), can take at most the two

possible values 0 and 1. Furthermore, since g is continuous at t = 0 with g(0) = 1, there

exists a t0 > 0 such that g(t) 6= 0 for all |t| ≤ t0, and it follows that h(t) = 1 for |t| ≤ t0.

By boundedness, tightness, and convergence of the characteristic functions we may

conclude from Theorem B.4 that there exists a (complex) measure ν ∈ M such that ν̂ = h,

and so h must in fact be continuous everywhere. Hence h is identically equal to 1, and so

for all t,

|f(t)|2 = g(t) 6= 0.

The theorem is proved.

3.2 The Closure of the Class SID

It has been demonstrated that SID shares many of the familiar characteristics of classical

infinitely divisible distributions. However, this is where the similarity ends, for one of the

most useful properties of the class ID is that it is closed, and the same may not be said of

SID distributions.

Proposition 3.2.1. SID is not a closed subset of M±(IR) under the weak topology.
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Proof. In Section 3.1, Example 3.1.3, it was proved that GBern(p) is SID for any p < 1/2.

Let Xn ∼ GBern(pn) for some sequence (pn) increasing to p = 1/2. Clearly, Xn converges

weakly as n →∞ to X ∼ GBern(1/2). However, the characteristic function of X is

ϕX(t) =
1 + eit

2
,

which is zero at the points t = ±(2k +1)π, k ∈ IN. Then X is not SID, by Theorem 3.1.2.

Consequently, SID is not a closed subset of M±(IR). Refer to the end of the section

to see the reason for the failure in this example .

The above proof actually shows something more. Notice that while SID is not closed

in M , it is still possible that SID may be closed when considered as a subspace of GID. To

see that SID is not closed in this less restrictive sense, remember that from Theorem 2.3.1

follows that X above is GID, and (of course) Xn is GID as well, therefore SID is in fact

not even closed as a subspace of GID!

This property (or, rather, lack thereof) is unexpected and somewhat unsettling. In the

absence of closure, many of the classical results regarding ID distributions collapse. One

might wonder if anything at all may be said about SID. Luckily it turns out that SID is

almost closed, in the following sense:

Theorem 3.2.1. SID is an Fσ set under the weak topology.

If one lets

AN = {µ : sup
j
‖µ(j)‖ ≤ N},

and

B(N, k,M) = {µ ∈ AN : sup
l
|IE||X(l)|1/k ≤ M},
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then the claim is that

SID =
∞⋃

N=1

∞⋃

k=1

∞⋃
M=1

B(N, k, M), (3.2.1)

where B(N, k,M) is closed under weak convergence for each N, k,M ∈ IN.

Proof. First is shown the equality of the two sets in equation (3.2.1). If µ is an element of the

right hand side then µ ∈ B(N, k, M) for some N, k, and M ; further supj ‖µ(j)‖ ≤ N < ∞

and 1/k > 0 satisfies supj |IE| |X(j)|1/k ≤ M < ∞, and so

sup
j
|IE| (1 + |X(j)|1/k

) ≤ N + M < ∞.

Therefore µ is SID by definition of SID. On the other hand, if µ is an element of the left

hand side then supj |IE|
(
1 + |X(j)|1/k

)
= C for some δ > 0 and C < ∞. This means that

µ ∈ AN for all N ≥ C; also for any j and for any k ∈ IN satisfying 1/k < δ one has from

Proposition A.2.1

|IE||X(j)|1/k ≤ (|IE||X(j)|δ)1/(kδ) · ‖µ‖1−1/(kδ) ≤ C1/(kδ) N1−1/(kδ) < ∞.

Choosing M ≥ C1/(kδ) N1−1/(kδ) allows µ ∈ B(N, k,M).

It remains to be seen that B(N, k, M) is closed under weak convergence. To that end

let {µn} ⊂ B(N, k, M) satisfy µn ⇒ µ for some µ ∈ M(IR), and the task is to show that

µ ∈ B(N, k,M). To do that it is first established that µ is GID.

Since µn ⇒ µ one has µ̂n → µ̂ pointwise. Let m > 1 be fixed and consider

µ̂
(m)
n = (µ̂n)

1
m , n = 1, 2, . . . .

These are by assumption Fourier-Stieltjes Transforms for {µ(m)
n } ⊂ M±(IR) and they con-

verge pointwise to

lim
n→∞

(µ̂n)
1
m = (µ̂)

1
m = gm, (3.2.2)
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where gm is the distinguished mth root as in Chung [9]. It is required that there exist

µ(m) ∈ M±(IR) such that

µ̂(m) = gm.

But since {µn} ⊂
⋃

k≥1

⋃
M≥1 B(N, k,M) the measures {µ(m)

n } are bounded (by N) and

also

|IE||X(m)
n |1/k ≤ M

for all n because {µn} ⊂
⋃

N≥1 B(N, k,M). Therefore

sup
n
|IE||X(m)

n |1/k ≤ M

m1/k
< ∞,

and a quick application of Proposition B.5 gives that {µ(m)
n : n ≥ 1} is bounded and

tight. By Theorem 1.3.1 there exists a signed measure νm ∈ M±(IR) and a subsequence

(nj) such that µ
(m)
nj

v−→ νm as j → ∞, and in fact, one may even arrange it so that

lim supj→∞ ‖µ(m)
nj ‖ ≤ ‖νm‖; but then (taking O = IR) Proposition B.2 yields

lim
j→∞

‖µ(m)
nj
‖ = ‖νm‖; (3.2.3)

(this will be needed later). Then by Proposition B.4:

µ̂
(m)
nj −→ ν̂m (3.2.4)

pointwise, but it is already known from equation (3.2.2) that µ̂
(m)
nj −→ gm, hence gm = ν̂m.

The signed measure µ(m) (= νm) has thus been found such that

µ̂(m) = ν̂m = gm = (µ̂)1/m ,

and since m was arbitrary, µ is GID.

Using equation (3.2.3) one sees ‖µ(m)‖ = limj→∞ ‖µ(m)
nj ‖ ≤ N , so µ ∈ AN . Also,

Equations (3.2.3) and (3.2.4) together with Theorem B.5 show that |µ(m)
nj | ⇒ |µ(m)|; then
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by boundedness and Theorem B.6 it may be asserted

|IE||X(m)|1/k ≤ sup
j
|IE||X(m)

nj
|1/k ≤ M,

and therefore µ ∈ B(N, k, M), as required.

Once this fundamental property of SID has been established, it suggests the question,

“What went wrong in the GBern(pn) example at the beginning of the section?”

The answer lies buried in earlier calculations. The pn converge to p = 1/2, which has

been seen to be equivalent to a sequence of GNegB(−1, αn) random variables with αn → 2

as n →∞. Referring to the calculations in Section 3.1, for any fixed m > 1,

‖ν(m)‖ = 2α−1/m
n −

(
αn

2− αn

)−1/m

,

and this converges as n →∞ to 21−1/m; therefore the trouble must not be in the variations.

We look a little further and find

|IE||X(m)
n | =

(
αn

2− αn

)−1/m
αn − 1

m(2− αn)
.

This last quantity explodes as n → ∞. The conclusion is that even when the variations

behave in ways that might seem completely reasonable, mass may still “escape to infinity”

in the moments, and this behavior can cause problems in unexpected places.

3.3 Asymptotic Negligibility and the Canonical Representation

It was learned in the last section that even when SID random variables converge, and even

when their component variations behave in a completely reasonable manner, still there may

be a loss of mass at infinity in the moments which can cause problems that are exhibited

in troubling ways, such as the lack of closure of the SID class.
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As a result, one is led to the following terminology: For p > 0, α ≥ 0 one says that a

GID random variable X is asymptotically negligible of rank p and order α, denoted

ANp(α), if

|IE| (1 + |X(n)|p) = 1 + O(n−α), as n →∞.

Note that every SID random variable is ANδ(0) for some δ > 0.

Remark. The defining quantity |IEν |
(
1 + |X(n)|p) simplifies to

‖ν(n)‖+ |IE||X(n)|p = 1 + 2‖ν(n)−‖+ |IE||X(n)|p.

In this form it is clear that X is ANp(α) if and only if both ‖ν(n)−‖ and |IE||X(n)|p are

O(n−α). Of course, Theorem 3.1.2 implies that ν(n) tends weakly to 10, which suggests that

the above quantities should tend to 0; the purpose of ANp(α) is to quantify the speed of

this tendency, in some sense.

The reason for the terminology “rank” and “order” will become clear from the following

Proposition 3.3.1.

ANp(α) ⊃ ANq(β) provided 0 < p < q and α/p ≤ β/q.

Proof. Supposing that X ∼ ν is ANq(β), it is shown first that |IE||X(n)|p is O(n−α):

nα|IE||X(n)|p ≤ nα · (|IE||X(n)|q)p/q · ‖ν‖1−p/q by Proposition A.2.1

= nα−β p
q · (nβ |IE||X(n)|q)p/q · ‖ν‖1−p/q

≤ Cp/q M1−p/q,

provided that α− β(p/q) ≤ 0, that is, provided α/p ≤ β/q.
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Now after referring to the remark above it suffices to show that ‖ν(n)−‖ = O(n−α).

But the conditions p < q and α/p ≤ β/q imply α < β, from which follows

nα‖ν(n)−‖ =
nβ

nβ−α
‖ν(n)−‖ ≤ nβ‖ν(n)−‖ = O(1).

It turns out that GPoi(λ) and GNegB(r, p) are AN1(1), as is any GCP random

variable in Theorem 3.1.1.

Example 3.3.1 (GPoi(λ)).

This is easy to see because in Section 3.1 is found

|IE| (1 + |X(n)|) = e2λ/n + e2λ/n |λ|
n

which is 1 + O(n−1).

Example 3.3.2 (GNegB(r, p)).

If 0 < p < 1 then we are in the classical world; there ‖ν(n)‖ = 1 for all n, and

|IE||X(n)| = rq/np which is O(n−1). On the other hand if 1 ≤ p < 2 then

‖ν(n)‖ =

(
p

2− p

)r/n

= 1 +
∞∑

k=1

1

k!

[
r

n
log

(
p

2− p

)]k

= 1 + O(n−1),

and

|IE||X(n)| =
(

p

2− p

)r/n |r|
n

p− 1

2− p
= O(n−1).

Membership in AN1(1) follows.

Example 3.3.3 (GBern(p), p < 1/2).
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Recall that this is merely the claim that GNegB(r, p) is AN1(1) for −1 < r < 0 any

0 < p < 2. For any such r and 0 < p < 1 one has

‖ν(n)‖ = 2pr/n − 1 = 2e
r
n

log p − 1

= 1 + 2
∞∑

k=1

1

k!

(
r log p

n

)k

= 1 + O(n−1),

and |IE||X(n)| = |r|q/np which is O(n−1), while for 1 ≤ p < 2

‖ν(n)‖ = 2pr/n −
(

p

2− p

)r/n

= 2 exp
{ r

n
log p

}
− exp

{
r

n
log

(
p

2− p

)}

= 1 +
∞∑

k=1

1

k!

[
r

n

(
log

(
p

2− p

)
− log p

)]k

= 1 + O(n−1)

and

|IE||X(n)| =
(

p

2− p

)r/n |r|
n

p− 1

2− p
= O(n−1);

consequently GBern(p) is AN1(1) for all p < 1/2.

Example 3.3.4 (GCP (λ, µ)).

From Section 3.1 these signed measures γ satisfy

‖γ(m)‖ ≤ exp

{ |λ|
m

(‖µ‖ ∓ 1)

}
and

|IEγ||X(m)| ≤ exp

{ |λ|
m

(‖µ‖ ∓ 1)

}
· |λ|

m
· |IEµ||X|

and the AN1(1) condition is obviously fulfilled for these random variables.

One of the most famous results for classical ID distributions is the Lévy-Khintchine

canonical representation of ID characteristic functions. Now that many properties and ex-

amples of SID distributions have been built up, one might wonder whether an appropriate

analogue of this result exists in the signed case and, if so, exactly what form it would have.
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It turns out that the SID class does have a corresponding representation for its char-

acteristic functions, the derivation of which we now undertake.

Theorem 3.3.1 (The Canonical Representation). In order that the function f(t)

be the characteristic function of a strongly infinitely divisible AN1(1) distribution, it is

necessary that its logarithm be representable in the form

log f(t) = iat +

∫ (
eitx − 1− itx

1 + x2

)
1 + x2

x2
dθ(x), (3.3.1)

where a is a real constant and θ(x) is a function of bounded variation satisfying the moment

conditions
∫ |x|k d|θ|(x) < ∞, k = −1, 0, 1. The integrand at x = 0 is defined by continuity

to be
(

eitx − 1− itx

1 + x2

)
1 + x2

x2

∣∣∣∣
x=0

= −t2

2
.

Conversely, if the logarithm of a function f is representable in the form (3.3.1), where

θ is as above and satisfies the additional requirements
∫ |x|−2 d|θ|(x) < ∞ and

∫
dθ 6=

− ∫
x−2 dθ(x), then f is the characteristic function of an SID random variable X that is

AN1(1). Moreover, X ∼ ν has

‖ν(m)‖ ≤ exp

{
2

m

∫ (
1 +

1

x2

)
dθ−(x)

}
and

|IEν ||X(m)| ≤ 1

m
·
∫ (

|x|+ 1

|x|
)

d|θ|(x).

Lastly, the representation of log f by (3.3.1) is unique.

Remark. Owing to Proposition 3.3.1, we may say that the above representation in fact

holds for all random variables X that are ANq(β) with 0 < q ≤ β.

Before the theorem may be proved some preliminary lemmas will be needed.
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Lemma 3.3.1. Let a be a constant and let θ be a real-valued function of bounded variation

satisfying

∫
|x|k d|θ|(x) < ∞, k = −2,−1, 0, 1, with

∫
dθ 6= −

∫
x−2 dθ(x).

Suppose that a function f(t) of the real variable t admits the representation (3.3.1). Then

f takes the form

log f(t) = λ(µ̂− 1) + ict,

and, in particular, f is the characteristic function of an SID random variable X.

Proof. Manipulate f into a more recognizable form:

log f(t) = iat +

∫ (
eitx − 1− itx

1 + x2

)
1 + x2

x2
dθ(x)

=

∫
eitx 1 + x2

x2
dθ(x)−

∫
1 + x2

x2
dθ(x) + iat− it

∫
1

x
dθ(x)

=

(∫
1 +

1

u2
dθ(u)

)[
1∫

1 + 1
u2 dθ(u)

∫
eitx

(
1 +

1

x2

)
dθ(x)− 1

]

+ it

(
a−

∫
1

x
dθ(x)

)
.

The above is recognized as having the form log f(t) = λ(µ̂(t)− 1) + ict, where

1. λ =
∫ (

1 + 1
u2

)
dθ(u),

2. dµ(x) = 1∫
(1+ 1

u2 ) dθ(u)
· (1 + 1

x2

)
dθ(x),

3. c =
(
a− ∫

1
x

dθ(x)
)
.

The moment condition
∫ |x|−1 d|θ|(x) < ∞ implies that θ (and hence µ) put mass 0 at the

origin. Next is verified

∫
|x| d|µ|(x) =

1∣∣∫ (
1 + 1

u2

)
dθ(u)

∣∣
∫
|x|

(
1 +

1

x2

)
d|θ|(x)

=
1∣∣∫ (

1 + 1
u2

)
dθ(u)

∣∣
∫ (

|x|+ 1

|x|
)

d|θ|(x) < ∞,
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and it then follows immediately from Theorem 3.1.1 that X ∼ ν = f∨ is SID.

Lemma 3.3.2 (Kolmogorov [26]). If the logarithm of a characteristic function is rep-

resentable in the form (3.3.1), where θ is a function of bounded variation, then such a

representation is unique.

Proof. Suppose that f has two representations of the form (3.3.1) with constants a1, a2

and functions θ1, θ2, respectively.

Let θ±1 and θ±2 be the positive and negative variations of θ1, θ2, and let h(t, x) be the

integrand in (3.3.1).

One obtains then

ia1t +

∫
h(t, x) dθ1(x)

= ia1t +

∫
h(t, x) dθ+

1 (x)−
∫

h(t, x) dθ−1 (x)

= ia2t +

∫
h(t, x) dθ2(x)

= ia2t +

∫
h(t, x) dθ+

2 (x)−
∫

h(t, x) dθ−2 (x),

whence

ia1t +

∫
h(t, x) d(θ+

1 (x) + θ−2 (x)) = ia2t +

∫
h(t, x) d(θ−1 (x) + θ+

2 (x)).

But the functions θ+
1 (x) + θ−2 (x) and θ−1 (x) + θ+

2 (x) are nondecreasing; hence in the

equation written above, representing the logarithm of a classical infinitely divisible law, one

must have

a1 = a2 and θ+
1 (x) + θ−2 (x) ≡ θ−1 (x) + θ+

2 (x),

that is,

θ+
1 (x)− θ−1 (x) ≡ θ+

2 (x)− θ−2 (x).
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This is equivalent to θ1 ≡ θ2.

Lemma 3.3.3. Let {φn} be determined according to (3.3.1) by constants {an} and functions

{θn} which are tight and of uniformly bounded variation. Suppose φn converges pointwise

to a complex valued function φ. Then there exist a constant a and a function θ of bounded

variation such that

1. an −→ a,

2. θn ⇒ θ,

3. |θn| ⇒ |θ|.

The function φ is determined by a and θ according to (3.3.1).

Proof. Since {θn} is bounded and tight, there exists a function θ of bounded variation such

that θn ⇒ θ and |θn| ⇒ |θ| due to Theorem 1.3.1 and Theorem B.5. But
(
eitx − 1− itx

1+x2

)
1+x2

x2

is bounded and continuous in x; therefore weak convergence implies

In(t) =

∫ (
eitx − 1− itx

1 + x2

)
1 + x2

x2
dθn approaches

∫ (
eitx − 1− itx

1 + x2

)
1 + x2

x2
dθ = I(t).

Now φn(t) → φ(t) and In(t) → I(t); it then follows that the sequence {an} converges to a

constant a and that φ is determined by a and θ according to (3.3.1).

Lemma 3.3.4. Let f be the characteristic function of an SID random variable X that is

AN1(1). Then there exists a sequence (φn) of functions determined according to (3.3.1) by

constants {an} and functions {θn} which are tight and of uniformly bounded variation, and

there exists a complex valued function φ such that φn −→ φ pointwise.
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Proof. Since f is the characteristic function of an SID law, one has f 6= 0 and thus, as

n →∞,

n{[f(t)]1/n − 1} = n{e(1/n) log f(t) − 1}

= n{(1/n) log f(t) + o(1/n)} = log f(t) + o(1).

Define φ = log f and see that φn approaches φ pointwise.

Now by hypothesis (f)1/n is a characteristic function of a distribution which will be

denoted by Fn. Then

n{[f(t)]1/n − 1} =

∫
(eitx−1 dFn(x))

= nit

∫
x

1 + x2
dFn(x) + n

∫ (
eitx − 1− itx

1 + x2

)
dFn(x).

If one denotes

an = n

∫
x

1 + x2
dFn(x),

θn(x) = n

∫ x

−∞

y2

1 + y2
dFn(y),

φn(t) = iant +

∫ (
eitx − 1− itx

1 + x2

)
1 + x2

x2
dθn(x),

then it is clear that φn has the form (3.3.1), as required.

It remains to show that {θn} is bounded and tight. Since for A ∈ B(IR),

θn(A) =

∫

A

nx2

1 + x2
dFn

=

∫

A

nx2

1 + x2
dF+

n −
∫

A

nx2

1 + x2
dF−

n ,

every positive (resp. neg., null) set of Fn is a positive (resp. neg., null) set of θn, implying

d|θn|(x) =
nx2

1 + x2
d|Fn|(x).

Then

‖θn‖ = |θn|(IR) = n

∫
x2

1 + x2
d|Fn|(x).
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Now remembering that X is AN1(1) it follows

‖θn‖ = n

∫
|x| |x|

1 + x2
d|Fn|(x)

≤ n

∫
|x| d|Fn|(x) = n|IE||X(n)| = O(1),

and so {θn} is bounded. Similarly, for any given −1 ≤ δ ≤ 1

|IEθn||X|δ =

∫
|x|δ d|θn|(x)

= n

∫
|x|δ x2

1 + x2
d|Fn|(x)

= n

∫
|x|

( |x|1+δ

1 + x2

)
d|Fn|(x)

≤ n

∫
|x| d|Fn|(x) = O(1),

thus tightness follows from Proposition B.5.

Proof of Theorem 3.3.1. (Necessity). Suppose f is the characteristic function of an SID

random variable X that is AN1(1). Then by Lemma 3.3.4 there exists a sequence (φn) of

functions determined according to (3.3.1) by constants {an} and functions {θn} which are

bounded and tight, such that φn −→ φ = log f pointwise.

Now Lemma 3.3.3 shows that there exist a constant a and a function of bounded

variation θ such that

1. an −→ a,

2. θn ⇒ θ,

3. |θn| ⇒ |θ|.

Further, log f = φ is completely determined by the constant a and the function θ accord-

ing to (3.3.1). The last detail is to check the moment conditions. It has been proved
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∫ |x|k d|θn|(x) = O(1) in Lemma 3.3.4 for the cases k = 0 (the boundedness calculation)

and k = ±1 (take δ = ±1 in the calculation of |IEθn||X|δ). These facts together with the

aid of the weak convergence of the total variation measures and arguments analogous to

those in Theorem B.6 yield that
∫ |x|k d|θ|(x) < ∞, k = −1, 0, 1.

(Sufficiency). Suppose that (3.3.1) holds with θ satisfying
∫ |x|k d|θ|(x) < ∞, k =

−2,−1, 0, 1 and
∫

dθ 6= − ∫
x−2 dθ(x). Then we proved in Lemma 3.3.1 that f = ν̂ is

indeed the characteristic function of a random variable X that is SID. It was shown there

that ν̂ takes the form ν̂(t) = exp {λ(µ̂(t)− 1) + ict}, where

1. λ =
∫ (

1 + 1
u2

)
dθ(u),

2. dµ(x) = 1∫
(1+ 1

u2 ) dθ(u)
· (1 + 1

x2

)
dθ(x),

3. c =
(
a− ∫

1
x

dθ(x)
)
,

and

|IEµ||X| =
∫ (

|x|+ 1

|x|
)

d
|θ|(x)∣∣∫ (

1 + 1
u2

)
dθ(u)

∣∣ .

As in the Examples, note that this implies X is AN1(1).

Now refer to Theorem 3.1.1, and from there is seen ‖ν‖ ≤ exp{|λ|(‖µ‖∓1)} according

to whether λ > 0 or λ < 0, respectively. Next is calculated:

|λ|(‖µ‖ ∓ 1) =

∣∣∣∣
∫ (

1 +
1

u2

)
dθ(u)

∣∣∣∣
[∫ (

1 +
1

x2

)
d|θ|(x)∣∣∫ 1 + 1

u2 dθ(u)
∣∣ ∓ 1

]

= ±
∫ (

1 +
1

u2

)
dθ(u)

[∫ (
1 +

1

x2

)
d|θ|(x)

± ∫
1 + 1

u2 dθ(u)
∓ 1

]

=

∫ (
1 +

1

x2

)
d|θ|(x)−

∫ (
1 +

1

x2

)
dθ(x).

Combine the integrals and use |θ| − θ = θ+ + θ− − (θ+ − θ−) = 2θ− to reach

‖ν‖ ≤ exp

{
2

∫ (
1 +

1

x2

)
dθ−(x)

}
.
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Lastly from Theorem 3.1.1 follows

|IEν ||X(m)| ≤ 1

m
· |λ||IEµ||X|

=
1

m
·
∣∣∣∣
∫ (

1 +
1

u2

)
dθ(u)

∣∣∣∣
∫
|x|

(
1 +

1

x2

)
d|θ|(x)∣∣∫ 1 + 1

u2 dθ(u)
∣∣

=
1

m
·
∫ (

|x|+ 1

|x|
)

d|θ|(x).

Finally, uniqueness of the representation was shown in Lemma 3.3.2, and the proof of

the theorem is complete.

As an application of the theorem, we return to an example discussed by Gnedenko and

Kolmogorov [26]. This, together with GBin(p), when 0 < p < 1/2, provides an example

of classical discrete random variables which are not ID, yet are SID with a corresponding

Lévy-Khinchine representation. We may now look back many years later and see this

example in an entirely new light.

Example 3.3.5.

Consider the function

f(t) =
1− β

1 + α
· 1 + αe−it

1− βeit
, 0 < α ≤ β < 1.

The function is continuous, f(0) = 1, and

f(t) =
1− β

1 + α

[
αe−it + (1 + αβ)

∞∑
n=0

βneint

]
.

Hence it is the characteristic function of a random variable taking all integral values from

−1 to ∞; moreover

IP(X = −1) =
1− β

1 + α
α, IP(X = n) =

1− β

1 + α
· (1 + αβ)βn, n = 0, 1, . . .
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Observe that X is an SID random variable which is not classically ID. For,

log f(t) =
∞∑

n=1

[
(−1)n−1αn

n
(e−int − 1) +

βn

n
(eint − 1)

]

= iγt +

∫
(eitu − 1− itu

1 + u2
)
1 + u2

u2
dθ(u),

where, as can easily be calculated,

γ =
∞∑

n=1

βn + (−1n)αn

1 + n2
,

and θ(u) is a function of bounded variation, having jumps at the points u = ±1, ±2, ±3, . . .,

of magnitudes

nβn

n2 + 1
for u = +n

and

(−1)n−1 nαn

n2 + 1
for u = −n.

Thus θ is not monotone, and by the classical Lévy-Khinchine representation X is not ID. It

is however immediate that X is SID, in fact AN1(1), once one quickly verifies the moment

conditions

∫
|x|k d|θ|(x) < ∞, k = −2,−1, 0, 1, with

∫
dθ 6= −

∫
x−2 dθ(x).

The section is closed with a table that collects the Lévy-Khinchine representations for

the other SID random variables introduced in the text.

3.4 Weak Infinite Divisibility

In this section we examine the more pathological class WID which is, by definition, all GID

random variables that are not strongly infinitely divisible. By their very nature examples

of this class are not well behaved and difficult to describe; nevertheless some important

ones are explained .
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Name Ch. Function Lévy-Khinchine Representation

a θ(x)

GPoi(λ) exp{λ(eit − 1)} λ/2 λ
2
10(x− 1)

GNegB(r, p)
(

p
1−qeit

)r ∑∞
k=1

rqk

1+k2

∑∞
k=0

rkqk

1+k2 10(x− k)

GBin(n, p) (q + peit)n
∑∞

k=1
−n

1+k2

(
p

p−1

)k ∑∞
k=0

−nk
1+k2

(
p

p−1

)k

10(x− k)

GCP (λ, µ) exp{λ(µ̂− 1)} λ
∫

u
1+u2 dµ(u) λ

∫ x

−∞
u2

1+u2 dµ(u)

Example 3.4.1. The Unif(0, 1) distribution is WID.

Proof. It is known from Theorem 2.2.1 that Unif(0, 1) is GID, yet its characteristic func-

tion

ϕ(t) =
eit − 1

it

is zero at the points t = ±2πk, k = 1, 2, . . .; by Theorem 3.1.2 it must not be SID, hence

it is in fact WID.

Example 3.4.2. The GBern(1/2) distribution is WID.

This was the example that showed that SID is not closed. It would be nice to be able

to say something about GBern(p) for p > 1/2, but none of those random variables are

even GID. However, one can say something more, taking as motivation the GBern(1/2)

example. First recall that a random variable X is said to have the Discrete Uniform

distribution (denoted DUnif(N)) if

IP(X = k) =
1

N
, k = 0, 1, . . . , N − 1

for some specified positive integer N ∈ IN.

Example 3.4.3. The DUnif(N) distribution is WID for every N ≥ 2.
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Proof. It is of course obvious that X ∼ DUnif(N) is GID because of Theorem 2.3.1. On

the other hand, it is easy to see that the characteristic function of X,

ϕX(t) =
1

N

N−1∑

k=0

eitk,

vanishes infinitely often. In particular, t = 2π(k + 1/N) is a root for k ≥ 0.

One may easily construct numerous other WID distributions by convolving finitely

many of the WID distributions already discussed.
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CHAPTER 4

DE FINETTI’S THEOREM

4.1 Introduction

The roots of the idea of finite exchangeability of events can be traced back to the new “Al-

gebra” in De Moivre [12] where the game “Rencontre” (“Matches”) was analyzed (Problem

XXXV. and Problem XXXVI.) In the Preface de Moivre writes enthusiastically, “In the

35th and 36th Problems I explain a new sort of Algebra,... I assure the Reader, that the

Method I have followed has a degree of Simplicity, not to say of Generality,...”.

Infinite sequences of exchangeable events seem to have first been discussed by Jules

Haag [29]. Not long after, de Finetti [13] independently introduced exchangeable ran-

dom variables and proved his famous representation theorem for the 2-valued case. More

precisely: if X1, X2, . . . take values in {0, 1} and

IP(X1 = x1, X2 = x2, . . . Xn = xn) = IP(X1 = xπ(1), X2 = xπ(2), . . . Xn = xπ(n))

holds for all n ∈ IN, x1, . . . , xn ∈ {0, 1}, and all finite permutations π of {1, 2, . . . , n}, then

for some measure µ on [0, 1]

IP(X1 = x1, X2 = x2, . . . Xn = xn) =

∫ 1

0

p
∑

xi(1− p)n−∑
xidµ(p).

In words, X1, X2, . . . are conditionally i.i.d. given the random variable p, which is distributed

according to the measure µ.

This theorem has been extended and generalized in various directions. De Finetti

himself showed that his representation held for real-valued random variables [14]. Dynkin

[21] replaced IR with more general spaces that are separable in some sense, and Hewitt and

59



60

Savage [30] extended the result to compact Hausdorff spaces, from which it can readily be

extended to, for example, Polish or locally compact spaces. The theorem does not hold

without some topological assumptions, however, as was shown by Dubins and Freedman

[20].

It is well known that de Finetti’s theorem also does not hold in general for finite

sequences of exchangeable random variables; for an easy example showing failure in case

n = 2 see Diaconis [16], [17], or Spizzichino [43]. It is not difficult to see the trouble:

suppose that X1, X2, . . . XN are conditionally i.i.d. given some random variable θ which is

distributed according to some probability measure ν. Then for 1 ≤ i, j ≤ N ,

IEXiXj = IEX1X2 (by exchangeability)

= IEν{IE[X1X2|θ]}

= IEν{IE[X1|θ] IE[X2|θ]} (conditional independence)

= IEν{ (IE[X1|θ])2} (conditionally identically dist’d)

And of course IEXi = IEν{IE[X1|θ]} = IEXj, so that

Cov(Xi, Xj) = IEν{ (IE[X1|θ])2} − (IEν{IE[X1|θ]})2

= Varν(IE[X1|θ])

≥ 0, when ν ≥ 0.

This gives immediately the familiar fact that the classical de Finetti representation

works only for sequences that are nonnegatively correlated, and instances where this con-

dition fails are often encountered in practice; take, for example, hypergeometric sequences.

In response to this problem there have been several versions and modifications of the

theorem developed for the finite case. Kendall [33] (also de Finetti [15]) showed that every



61

finite system of exchangeable events is equivalent to a random sampling scheme without

replacement, where the number of items in the sampling has an arbitrary distribution.

Diaconis [16] and Diaconis and Freedman [17] used this to find total variation distances to

the closest mixture of i.i.d. random variables, (which turns out to imply de Finetti’s theorem

in the limit). Gnedin [27] explored conditions on the density of a finite exchangeable

sequence and found a criterion for extendability to an infinite sequence. Several other

aspects of finite exchangeability are in Diaconis and Freedman [18], von Plato [46], and

Diaconis et al. [19]; Kingman [34] and Aldous [1] give useful surveys of exchangeability.

See also Ressel [39].

The present Chapter reexamines the failure of de Finetti’s theorem and in the process

reveals that while for infinite exchangeable sequences which are nonnegatively correlated the

classical (that is, nonnegative) mixtures of i.i.d. random variables are sufficient, with some

finite sequences, we need to consider an extended notion of “mixture” to retain de Finetti’s

convenient representation. In particular, we have the

Theorem 4.1.1. Let (S, B) be an abstract measurable space and write S∗ for the set of

probability measures on (S, B). Endow S∗ with the smallest σ-field B∗ making p 7→ p(A)

measurable for all A ∈ B. If p ∈ S∗, then pn is the product measure on (Sn, Bn).

If IP is an exchangeable probability on (Sn,Bn) then there exists a signed measure ν

such that

IP(A) =

∫

S∗
pn(A) dν(p), for all A ∈ Bn.

Further, ν is of bounded variation and satisfies ν(S∗) = 1.

It is noted that Jaynes [31] independently discovered this theorem in the case where

the random variables take only the values {0, 1}. His proof is very concise, using Bernstein
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and Legendre polynomials. In that essay he alludes to the extension of the theorem to the

abstract case, saying, “...A more powerful and abstract approach, which does not require

us to go into all that detail, was discovered by Dr. Eric Mjolsness while he was a student

of [mine]. We hope that, with its publication, the useful results of this representation will

become more readily obtainable...”. Alas, to the knowledge of the present author that

publication never appeared.

In any case, this research is distinct from the above papers in a number of ways. First,

this result holds for an arbitrary measurable space without topological assumptions, in

symmetry to Diaconis and Freedman [17], but in contrast to Dubins and Freedman [20].

Such luxury is afforded because one deals with finite sequences and avoids the pathologies

that arise with infinite product spaces and limits.

Second, the method of proof of the representation, while elementary, is of an entirely

different character. For example, de Finetti [15] shows that finite exchangeable sequences

are mixtures of hypergeometric processes, and then takes a weak limit as the sample size

increases without bound. For us, there is no limit whatever; we have only finitely many

exchangeable random variables to use. Similarly, Kendall [33] used the (Reversed) Martin-

gale Convergence Theorem combined with the hypergeometric mixture representation to

show the existence of a sigma algebra conditional on which X1, X2, . . . are i.i.d., again a

limiting argument. Hewitt and Savage [30] start the analysis with an infinite sequence and

derive its mixture representation; we can get no help from there. Ressel [39] uses concepts

of Harmonic Analysis on semigroups and positive definite functions to find a unique Radon

mixing measure for the infinite sequence. Our paper uses simple measure theory and some

linear algebra.

Third, the conclusion of this chapter usefully complements what is currently known
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regarding finite exchangeable sequences. Indeed, Diaconis and Freedman [17], [25] showed

that for a finite exchangeable real-valued sequence of length k that can be embedded in a

sequence of length N ≥ k, a classical mixture of an i.i.d. sequence is at most 2(1−Nk/N
k)

away (in terms of total variation distance), where Nk = N(N − 1) · · · (N − k + 1). This

bound is sharp.

Now, suppose we have an exchangeable sequence that is only slightly negatively cor-

related, say ρ = −0.01. Then it is easy to see (in Kingman [34] or Spizzichino [43], for

example) that N can be at most 100. One can see the reason why by considering exchange-

able X1, X2, . . . , Xn with X1 having finite nonzero variance σ2 and correlation coefficient

with X2 being ρ. Then the variance of
∑n

i=1 Xi is

n∑
i=1

σ2 +
∑

i6=j

ρσ2 = nσ2[1 + (n− 1)ρ],

and since the above quantity is nonnegative it follows

ρ ≥ −(n− 1)−1,

or in other words, N ≤ 100.

The bound 2(1−100k/100k) monotonically increases as a function of k, and by the time

k = 12, it has already passed the value 1, the maximum total variation distance between

any two distributions being of course 2. From a practical standpoint this means that for

even moderately sized samples, the present bound gives little insight. It is completely

unclear how close the closest classical mixture is, and the situation only worsens as the

variables become more correlated. Again, with an infinite sequence the above correlation

inequality would hold for all n ≥ 1, and in such a case ρ would therefore be nonnegative.

Thus here is an alternative proof that a necessary condition for finite sequences to have the

classical de Finetti representation is that they be nonnegatively correlated.
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This chapter guarantees an exact representation, for any finite k, and regardless of

the underlying correlation structure. In an application to Bayesian Theory, we show that

by allowing the mixture to stand in with a Prior distribution one can formally justify

common practical procedures; in addition, the resulting Posteriors continue to converge

to degenerate distributions under usual regularity conditions, together with much wider

assumptions than are ordinarily supposed.

We present a second application in the area of Statistical Physics. We demonstrate

that the quantum statistics of Fermi-Dirac may be derived from the statistics of classical

(i.e. independent) particles by means of a signed mixture of multinomial distributions, or

Maxwell-Boltzmann statistics. This work continues in the vein of work by Bach, Blank and

Francke [4], who performed a similar derivation of Bose-Einstein Statistics using the clas-

sical de Finetti theorem. In many ways the resulting asymmetry for Fermi-Dirac statistics

is eliminated.

As a final remark, it should be pointed out that the use of signed measures in proba-

bility theory is by no means new; it has claimed even proponents such as Bartlett[6] and

Feynman [23]. The existing literature is voluminous. For the purposes of this dissertation

those results are not needed, but the interested reader could begin by consulting the survey

by Mückenheim [37].

4.2 Finite Exchangeable Sequences

We start by extending some earlier results of Diaconis [16] from the space {0, 1} to the

more general {0, 1, . . . , n}. Let Pn represent all probabilities on
∏n

i=1 Si, where Si =

{s0, s1, . . . , sn−1} for each i. Then Pn is a nn − 1 dimensional simplex which is naturally

embedded in Euclidean nn space.
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Pn can be coordinatized by writing p = (p0, p1, . . . , pnn−1) where pj represents the

probability of the outcome j, and j = 0, 1, . . . , nn− 1 is thought of as having its n-ary

representation, written with n n-ary digits. Thus if n = 3, then j = 5 refers to the point

012. Let Ωn(k) = Ωn(k0, k1, . . . , kn−1) be the set of j, 0 ≤ j < nn, with exactly k0 digits 0,

k1 digits 1, . . . , kn−1 digits n− 1. The number of elements in Ωn(k) is n!/(k0!k1! · · · kn−1!).

Let En be the exchangeable measures in Pn; then En is convex as a subset of Pn.

Lemma 4.2.1. En has
(
2n−1

n

)
extreme points h0,h1, . . . ,h(2n−1

n )−1, where hk is the measure

putting mass k0!k1! · · · kn−1!/n! at each of the coordinates i ∈ Ωn(k), and mass 0 elsewhere.

Here, the index vector k = (k0, k1, . . . , kn−1) runs over all possible distinct “urns”, as

described in the proof below.

Each exchangeable probability p ∈ En has a unique representation as a mixture of the

(
2n−1

n

)
extreme points.

Proof. This is a direct generalization of Diaconis’ [16] results to a higher dimensional set-

ting. Intuitively, hk is a column vector representing the measure associated with n drawings

without replacement from the unique urn containing n balls, k0 marked with s0, k1 marked

with s1, . . . , kn−1 marked with sn−1; h stands for “hypergeometric”. Each hk is exchange-

able, and finding the total number of distinct urns amounts to finding the number of ways

to distribute n indistinguishable balls into n boxes marked s0, s1, . . . , sn−1 respectively. It

is well known that the number of ways to distribute r balls into m (ordered) boxes is just

(
m+r−1

r

)
. In this case, m = r = n.

Note that when S = {s0, s1} = {0, 1}, this matches Diaconis’ [16] result where En had

n + 1 extreme points, because in that case m = 2 and r = n, so that

(
2 + n− 1

n

)
=

(
n + 1

n

)
= n + 1.
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Now suppose that hk is a mixture of two other exchangeable measures, that is hk =

pa + (1 − p)b, where a and b are exchangeable and 0 < p < 1. Then a and b put mass

zero at every point where hk puts mass zero, namely, on the complement of Ωn(k).

By exchangeability, outcomes with the same number of s0’s, s1’s, . . . sn−1’s have the

same probability. Therefore, the entries of both a and b must be equal at all coordinates

j ∈ Ωn(k). But the sum of the entries is 1 in each vector, so the mass at each j ∈ Ωn(k)

must be k0!k1! · · · kn−1!/n!. This implies a = b, and hk is in fact an extreme point of En.

It is well known that every point of a simplex has a unique representation as a mixture

of extreme points.

Now we see that En is a
(
2n−1

n

)
sided polyhedron. The extreme points

h0,h1, . . . ,h(2n−1
n )−1 are linearly independent because they are supported on the disjoint

sets Ωn(j), j = 0, . . . ,
(
2n−1

n

)− 1. And, a probability p is in En if and only if it is constant

on the sets Ωn(k).

An interesting subclass is the class Mn ⊂ En of i.i.d. probabilities on Pn. Mn can be

parameterized as an nth degree polynomial of n− 1 variables:

m = (pn
0 , p

n−1
0 p1, . . . , pn−2p

n−1
n−1, p

n
n−1).

In general, for j ∈ Ωn(k), we have mj =
∏n−1

i=0 pki
i , where pi ≥ 0, i = 0, . . . , n− 1, and

p0 + p1 + · · ·+ pn−1 = 1. The set Mn is a smooth surface that twists through En.

The class of mixtures of i.i.d. probabilities (with which de Finetti’s Theorem is asso-

ciated) is a convex set lying in En. Measures in this set can be represented in uncountably

many ways.

The above has similarly been a many-dimensional analogue of Diaconis [16], but we

break new territory with the following
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Proposition 4.2.1. Each exchangeable probability p ∈ En can be written as a (possibly)

signed mixture of measures {vi} ⊂ Mn.

Proof. Consider the
(
2n−1

n

) − 1 dimensional hyperplane H of Euclidean nn space that is

determined by the linearly independent hypergeometric vectors {hk}, and consider the

surface Mn ⊂ H. We choose
(
2n−1

n

)
linearly independent vectors {vi : i = 1, . . . ,

(
2n−1

n

)}

in the uncountable collection Mn to construct a basis for H. Then any p ∈ En ⊂ H can

be written as a (possibly) signed linear combination p =
∑

i aivi. The fact that
∑

i ai = 1

follows from the observation that vi(
∏n

j=1 Sj) = 1 for all i, so that p(
∏n

j=1 Sj) =
∑

i ai = 1.

In symmetry to the above we may, as Diaconis [17] did, define the column vector

mk to represent the measure associated with n drawings with replacement from the urn

containing k0 balls marked with s0, k1 marked with s1, . . . , kn−1 marked with sn−1; m

stands for “multinomial”. From our Proposition 4.2.1 follows the

Corollary 4.2.1. Each extreme point hk can be written as a signed mixture of the multi-

nomial measures {mj}.

Proof. In essence, we have only chosen {mj} as a particular basis for the hyperplane H.

For each k, the measure mk is exchangeable, so it is (from Lemma 4.2.1) a unique mixture

of the measures {hj}. That is, there exist nonnegative weights w0, w1, . . . , w(2n−1
n )−1 that

sum to one satisfying

mk =

(2n−1
n )−1∑
j=0

wj hj.

A moment’s reflection will convince us that the weights are exactly the ordinary multi-
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nomial distribution; in fact, we can display them explicitly in the form

mk =
∑

j

(
n

j0 j1 · · · jn−1

)(
k0

n

)j0

· · ·
(

kn−1

n

)jn−1

· hj,

where we interpret 00 = 1 and the summation runs over the
(
2n−1

n

)
indices j.

Letting wk be the column vector containing the weights associated with mk we can

write in matrix notation M = HW, where

M =
[

m0 m1 · · · m(2n−1
n )−1

]
, H =

[
h0 h1 · · · h(2n−1

n )−1

]
, and

W =
[

w0 w1 · · · w(2n−1
n )−1

]
.

Now, the matrix W is invertible; indeed, W is merely the change of basis matrix

from the basis {hj} to the basis {mj}. Linear independence of the wj’s follows from the

observation that any column vector β satisfying W β = 0 also satisfies Mβ = H (W β) =

0. And the vectors mk, each corresponding to distinct urns k, are easily verified to be

linearly independent, hence β must be 0 and invertibility of W follows.

The required representation is obtained by inverting W to yield H = MW−1, which

gives each extreme point hk to be the mixture of the vectors {mj}, with the weights being

the corresponding k-th column of W−1.

Note that in the above proof no claim was made either way regarding the sign of the

weights of W−1. The fact of the matter is that except in the degenerate cases an extreme

point hk will be a signed mixture of the mj’s. For an arbitrary exchangeable measure

nothing can in general be said. The deciding factor is the vector’s location in En; if it

happens to fall in the convex set of mixtures of i.i.d. vectors in Mn, then its representation

will be classical. If it falls too close to the extreme points hk, then its existing mixture

representation is necessarily signed.
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Now we go to make precise that which has been mentioned above, together with direct

examples of the geometric reasoning used. An illuminating example occurs already in case

n = 2. Consider sampling without replacement from an urn containing two balls, one

marked 0 and the other marked 1. Here the exchangeable random variables X1, X2 satisfy

IP(X1 = 1, X2 = 0) = IP(X1 = 0, X2 = 1) =
1

2
,

IP(X1 = 0, X2 = 0) = IP(X1 = 1, X2 = 1) = 0.

Suppose for the moment that there existed a nonnegative mixing measure µ for this case.

Then one would have

0 = IP(X1 = 1, X2 = 1) =

∫ 1

0

p2dµ(p),

implying that µ puts mass 1 at the point p = 0, but on the other hand,

0 = IP(X1 = 0, X2 = 0) =

∫ 1

0

(1− p)2dµ(p),

which implies that µ puts mass 1 at the point p = 1, which is impossible. This particular

example is the one Diaconis [16], [17] used to display the inadequacy of de Finetti’s theorem

when applied to certain finite sequences of exchangeable random variables.

Now consider the space P2 of all possible assignments of probabilities to the four events

{X1 = x1, X2 = x2}, xi = 0, 1. That is, all probabilities on {0, 1}2. P2 is a 3 dimensional

tetrahedron, which is embedded in IR4.

These probabilities are represented as the set of all points p = (p0, p1, p2, p3), where

pi ≥ 0 and p0 + p1 + p2 + p3 = 1. Set

p0 = IP(X1 = 0, X2 = 0),

p1 = IP(X1 = 0, X2 = 1),
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p2 = IP(X1 = 1, X2 = 0),

p3 = IP(X1 = 1, X2 = 1).

(Notice that pj represents the probability of the outcome j, j = 0, 1, 2, 3, written in binary

notation.) See Figure 1, page 82, as borrowed from Diaconis [16]. Here we have the sets

Ω2(2, 0) = {0}, Ω2(1, 1) = {1, 2},

Ω2(0, 2) = {3}.

The subclass E2 of exchangeable probabilities is the set of all p where p1 = p2, that is,

the set of all p which are constant on the sets Ω2(k), k =(2,0), (1, 1), (0, 2). E is convex

as a subset of P2; in fact, E2 is the triangle with vertices (1, 0, 0, 0), (0, 1/2, 1/2, 0), and

(0, 0, 0, 1). The troublesome exchangeable point (0, 1/2, 1/2, 0) is indicated on the figure as

well.

The vertices of the triangle are the hypergeometric vectors (extreme points) hk. In

particular,

h(2,0) = (1, 0, 0, 0), h(1,1) = (0, 1/2, 1/2, 0), and

h(0,2) = (0, 0, 0, 1).

It is clear that the hk are linearly independent, since they are supported on the disjoint

sets Ω2(k).

Moving to the class M2, we recognize it as the parabola ((1−p)2, (1−p)p, p(1−p), p2)

parametrized in p for the values 0 ≤ p ≤ 1, where of course p would represent IP(X1 = 1).

This situation is shown in Figure 2, page 82, also from Diaconis [16]. As special cases we

identify the multinomial vectors

m(2,0) = (1, 0, 0, 0), m(1,1) = (1/4, 1/4, 1/4, 1/4), and
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m(0,2) = (0, 0, 0, 1).

Notice that m(2,0) = h(2,0) and m(0,2) = h(0,2); in the degenerate cases it does not matter

whether one samples with or without replacement.

Now consider the 2-dimensional plane H of Euclidean 4-space that is spanned by the

vectors hk. Since E2 ⊂ H, then any exchangeable p may be written as a (possibly signed)

linear combination of the hk’s. For the exchangeable vectors mk this mixture takes the

form

(
m(2,0) m(1,1) m(0,2)

)
=

(
h(2,0) h(1,1) h(0,2)

) ·W

where

W =




1 0 1/4

0 1 1/4

0 0 1/2




Of course, the multinomial mk’s lie also in H, and further span the subspace. By a change

of basis the hk’s are signed mixtures of the mk’s. In other words H = MW−1, where

W−1 =




1 0 −1/2

0 1 −1/2

0 0 2




.

The two negative entries are evidence that when random variables are negatively corre-

lated we must resort to extended notions of mixtures to retain de Finetti’s convenient

representation.

4.3 Proof of the Theorem

Proof. For s = (s0, s1, . . . , sn−1) ∈ Sn, let U(s) be the urn consisting of n balls, marked

s0, s1, . . . , sn−1 respectively. Let HU(s) be the distribution of n draws made at random
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without replacement from U(s). Thus, HU(s) is a probability on (Sn, Bn). The map

s 7→ HU(s)(A) is measurable on (Sn, Bn) for each A ∈ Bn.

Exchangeability of IP entails that

IP(A) =

∫

Sn

HU(s)(A) IP(ds).

This is true because HU(s) is the measure placing mass 1/n! at the n! points which are

permutations of s = (s0, s1, . . . , sn−1), in which case HU(s)(A) = 1/n!
∑

π 1A(πs), where π

is a permutation of the first n positive integers and the summation extends over the n! such

permutations π. Next we calculate

∫

Sn

HU(s)(A) IP(ds) =

∫

Sn

1

n!

∑
π

1A(πs) IP(ds)

=
1

n!

∑
π

∫

Sn

1A(πs) IP(ds)

=
1

n!

∑
π

∫

Sn

1A(s) IP(ds) (by exchangeability)

=
1

n!
· n! IP(A)

= IP(A).

Furthermore, from our Corollary 4.2.1 we may write

HU(s)(A) =

∫

S∗
pn(A) µ(s, dp),

where µ(s, ·) is a signed measure on S∗, the space of probability measures on (S, B), and

pn(A) is the probability of getting an outcome in A when doing an n-length i.i.d. experiment

based on probability measure p ∈ S∗. We may think of µ as a signed transition kernel.
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Thus, we may write

IP(A) =

∫

Sn

HU(s)(A) IP(ds)

=

∫

Sn

(∫

S∗
pn(A) µ(s, dp)

)
IP(ds)

=

∫

S∗
pn(A) ν(dp),

where ν is the signed measure on S∗ defined by

ν(B) =

∫

Sn

µ(s, B) IP(ds), B ∈ B∗.

Of course, ν(S∗) =
∫

Sn µ(s, S∗) IP(ds) =
∫

Sn IP(ds) = 1.

There are two remaining details to check. First, µ should have the right measurability

properties, and second, ν should be of bounded variation.

It is clear on the one hand that for each s, the function µ(s, ·) is a measure on S∗.

On the other hand, the claim that for each B ∈ B∗, the function µ(·, B) is a measurable

function of s is not quite as clear. To see why this is the case, it is useful to examine the

explicit form of the signed measure µ guaranteed by Corollary 4.2.1. It is defined by the

formula

µ(s, B) =

(2n−1
n )∑

k=1

wk 1B(p(k)),

where the (possibly negative) weights wk are from the matrix W−1, and the measures p(k)

are elements of S∗ defined by

p(k)(A) =
n−1∑
i=0

p
(k)
i 1A(si), for A ∈ B.

The numbers p
(k)
i are nonnegative and sum to one.

Since µ(·, B) is a linear combination of indicator functions, it suffices to show that for

fixed k the function 1B(p(k)) is a measurable function of s, or in other words, we just need
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to verify that the set {s : p(k) ∈ B} is Bn measurable. Further, we remember that we

endowed S∗ with the weak∗ σ-algebra B∗, generated by the class of sets {p : p(A) < t}, as

A ranges over B and t over [0, 1]. Thus, it is only necessary to confirm the measurability

for such “nice” sets B ∈ B∗. After these simplifications we find

{s : p(k) ∈ B} = {s :
∑

p
(k)
i 1A(si) < t},

and this set is Bn measurable because the function g(s) =
∑

pi1A(si) is a measurable

function of s when A ∈ B.

To finish the proof we establish that ν is of bounded variation. First fix s, let W−1 =

(wij) be as in Corollary 4.2.1 and notice

‖µ(s, ·)‖var = ‖
∑

wk δp(k)‖var ≤
∑
i,j

|wij| := Mn,

where Mn is a finite constant depending only on n. At last,

‖ν‖var ≤
∫
‖µ(s, ·)‖var IP(ds) ≤

∫
MndIP = Mn < ∞,

as required.

4.4 An Application to Bayesian Consistency

We turn to Bayesian Theory, where de Finetti’s Theorem is commonly applied, for example

in Predictive Inference. The standard setup involves some unknown (random) parameter θ,

conditional on which a sequence of random variables X1, X2, . . . is distributed according to

some family {f(·|θ) : θ ∈ Θ} of p.d.f.’s indexed by θ, called the Likelihood family. In some

situations θ may be interpreted as a strong law limit of a sequence of observations. The

Bayesian has subjective beliefs about θ, represented by a Prior probability distribution π(θ)

on Θ, the parameter space. The goal is to use the information contained in observations
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X1, X2, . . . Xn to sequentially update the Prior distribution π(θ) to a Posterior distribution

π(θ|x) via Bayes’ Rule π(θ|x) ∝ f(x|θ) π(θ).

One hopes that with more and more information, one would become more confident

about the location of θ, which would be reflected in the Posterior π(θ|x) by a concentration

as n → ∞ to a degenerate distribution centered at the true value of θ. It is a celebrated

fact that under some regularity conditions such convergence does take place, see Berk [7],

Le Cam [35], and Wald [47]. The usual method of proof is to suppose that the Likelihood

may be written as a product of identical factors: f(x|θ) =
∏n

i=1 f(xi|θ). Then (depending

on the particular proof) one takes logarithms, normalizes accordingly, and appeals to the

Strong Law of Large Numbers to show that the Posterior does indeed concentrate as n →∞

to the true value of θ.

In this context the problem arises when one goes to use such a statement in practice;

one is always confined by Nature to finite samples. As we have seen in the Introduction,

under finite exchangeability the Likelihood certainly may not be written as a product of

identical factors without first supposing that the sequence could be imbedded in an infinite

exchangeable sequence and then applying de Finetti’s theorem, that is, unless one asserts

that the sequence could in principle continue indefinitely. In particular, this immediately

restricts the Bayesian to observations which are nonnegatively correlated, and even then it

is not guaranteed – in theory or practice – that a given sampling process could continue

without end.

The theorem presented in this chapter shows that, with the introduction of an inter-

mediate mixing generalized random variable β one may consider the sequence conditionally

i.i.d. given β and θ without concern for the correlation or the conceptual difficulties asso-

ciated with sampling from a “potentially infinite” exchangeable sequence.
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A pointed criticism of this method would be that the resulting Likelihood f(x|β, θ)

(possibly) takes negative values, which might seem unpleasant or unnatural. In fact, it

seems as though we have traded one conceptual difficulty for another! However, it should

be realized that the method is merely a mathematical technique meant to justify and explain

what is strongly desired and commonly observed in practice: namely, the convergence of

the sequence of Posteriors to a distribution degenerate at the true value of the parameter.

We go to demonstrate this fact, and for simplicity we prove it for the case when β

and θ take at most a countable number of values by modifying an argument in Bernardo

and Smith [8], a more general setting being much more technically cumbersome; see Berk

[7]. Here we suppose that the mixing generalized random variable β takes countably many

values βk, k = 1, 2, . . ., and the true parameter θi∗ is distinguishable from the other values

in the sense that the logarithmic divergences
∫ |f(x|βk, θi∗)| log |f(x|βk, θi∗)/f(x|βl, θi)| dx

are strictly positive for any k 6= l or i 6= i∗.

Proposition 4.4.1. Let x = (x1, x2, . . . xn) be exchangeable observations from a Likelihood

family {f(·|θ) : θ ∈ Θ}, where Θ = {θ1, θ2, . . .} is countable. Suppose that θi∗ is the true

value of θ and the following regularity conditions hold:

1. The Likelihood f(·|βk, θi) > 0 w.p.1, for all k, i ≥ 1.

2. The Prior satisfies π(θi∗) > 0 and there exists k∗ such that g(βk∗ |θi∗) 6= 0, where g

denotes the mass function of β.

3. The joint mass function g(β, θ) is of bounded variation:
∑

k,i |g(βk, θi)| < ∞.

4. For any k 6= l or i 6= i∗,

∫
f(x|βk, θi∗) log

[
f(x|βk, θi∗)

f(x|βl, θi)

]
dx > 0.
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Then

lim
n→∞

π(θi∗ |x) = 1, lim
n→∞

π(θi|x) = 0, i 6= i∗.

Proof. By Bayes’ Rule,

π(θi|x) =
f(x|θi)π(θi)∑

m f(x|θm)π(θm)

But by Theorem 4.1.1 we may write

f(x|θ) =
∑

k

n∏
j=1

f(xj|βk, θ) · g(βk|θ),

where f(·|β, θ) ≥ 0 and g(β|θ) is (possibly) signed. The above expression then becomes

π(θi|x) =

∑
k

∏n
j=1 f(xj|βk, θi) g(βk|θi)π(θi)∑

m

∑
l

∏n
j=1 f(xj|βl, θm) g(βl|θm)π(θm)

=
∑

k

∏n
j=1 f(xj|βk, θi) g(βk, θi)∑

m,l

∏n
j=1 f(xj|βl, θm) g(βl, θm)

.

By condition 2, there exists k∗ such that g(βk∗ , θi∗) 6= 0; consequently after using condi-

tion 1 and dividing numerator and denominator by
∏n

j=1 f(xj|βk∗ , θi∗) there is obtained

=
∑

k

exp{Sk,i}g(βk, θi)∑
m,l exp{Sl,m}g(βl, θm)

where

Sk,i = log

(
n∏

j=1

f(xj|βk, θi)

f(xj|βk∗, θi∗)

)
=

n∑
j=1

log
f(xj|βk, θi)

f(xj|βk∗ , θi∗)
.

Now, conditional on (βk∗ , θi∗), Sk,i is the sum of n i.i.d. random variables and therefore

lim
n→∞

1

n
Sk,i =

∫
f(x|βk∗ , θi∗) log

[
f(x|βk, θi)

f(x|βk∗ , θi∗)

]
dx,

by the Strong Law of Large Numbers. Condition 4 implies that the right hand side is

negative for k 6= k∗ or i 6= i∗, and it of course equals zero for k = k∗, i = i∗; therefore as

n → ∞, Sk,i → −∞ for k 6= k∗ or i 6= i∗ and Sk∗,i∗ → 0. Proposition 4.4.1 now follows

from Condition 3 and the Dominated Convergence Theorem.
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4.5 An Application to Statistical Physics

Following Johnson, Kotz, Kemp [32], Bach [3], Constantini and Garibaldi [10], consider a

physical system comprising a number n of particles of some kind, for example electrons,

protons, or photons. Suppose that there are d states (energy levels) in which each particle

can be. If Xi represents the state of particle i, i = 1, . . . , n, then the overall state of the

system is (X1, . . . , Xn), and equilibrium is defined as the overall state with the highest

probability of occurrence.

If all dn arrangements are equally likely the system is said to behave according to

Maxwell-Boltzmann statistics (MB), where “statistics” is used here in a sense mean-

ingful to physicists. Assumptions on the system that lead to such behavior are:

1. The particles are identical in terms of physical properties but distinguishable in terms

of position. This is equivalent to the statement that the particle size is small compared

with the average distance between particles.

2. There is no theoretical limit on the fraction of the total number of particles in a

given energy state, but the density of particles is sufficiently low and the temperature

sufficiently high that no more than one particle is likely to be in a given state at the

same time.

However, modern experimentation (particularly at low temperatures) has yielded two

more plausible sets of hypotheses concerning physical systems; these result in Bose-

Einstein statistics (BE) and Fermi-Dirac statistics (FE).

For both, one supposes that the particles are indistinguishable (thereby granting ex-

changeability). The BE statistics are obtained by retaining the second assumption that
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there is no limit on the number of particles that may occupy a particular energy state.

Particles that are observed to obey BE statistics are called bosons and include photons,

alpha particles, and deuterons.

For FD statistics one stipulates instead that only one particle can occupy a particular

state at a given time (a condition well known as the Pauli exclusion principle). Particles

that obey the principle are called fermions and include protons, neutrons, and electrons.

All known elementary particles fall into one of the two above categories.

Much work has been done studying these different models and their consequences

for the interpretation of the physical concepts. Constantini, Galavotti, and Rosa [11]

proposed a new set of ground hypotheses for deriving the three models. Bach, Blank, and

Francke [4], using the argument that exchangeable random variables are appropriate for

describing indistinguishable particles, used a multivariate de Finetti’s theorem to derive BE

statistics. Bach [2] explored the quantum properties of indistinguishable particles, while

Bach [3], Constantini and Garibaldi [10] attempted to base the derivation of the different

statistics on the correlation structure and an introduced relevance quotient.

This section, in the spirit of Bach, Blank, and Francke [4], shows that the Fermi-Dirac

statistics of indistinguishable (exchangeable) particles can be derived from the statistics of

classical (i.e. independent) particles by means of Theorem 4.1.1.

More precisely, we are concerned with the statistical problem of distributing n particles

into d cells. We introduce a probability space (Ω, B, µ) and random variables Xi : Ω →

{1, . . . , d}, where the event {Xi = j} represents the outcome that particle i is in cell j.

As remarked above, there are dn different configurations, which are characterized by the

events {X = j}, where X = (X1, . . . , Xn) and j ∈ {1, . . . , d}n.

For a given configuration {X = j}, we define the occupation numbers nk, k = 1, . . . , d,
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by

nk(j) =
n∑

i=1

δk,ji
.

For the particles of MB statistics we obtain

IPMB(X = j) = d−n j ∈ {0, . . . , n}d.

However, under BE statistics we have

IPBE(X = j) =

(
n

n1(j) · · ·nd(j)

)−1(
n + d− 1

n

)−1

j ∈ {0, . . . , n}d.

For FD statistics, according to the Pauli exclusion principle we must assume n ≤ d. Also,

whenever there exists an occupation number nk larger than 1 we must set the corresponding

probability zero, with the remaining configurations being equally likely:

IPFD(X = j) =





0 if n(j) /∈ {0, 1}d,

(
d
n

)−1
(n!)−1 if n(j) ∈ {0, 1}d.

It is immediately clear that IPMB, IPBE, and IPFD are exchangeable. It was shown

in Bach, Blank, and Francke [4] that IPBE is a nonnegative Dirichlet mixture of multino-

mial distributions, i.e. statistics corresponding to classical, independent particles. And in

Bach [3] the correlation structures for the models were found to be

CorrBE/FD(Xi, Xj) = ±(d± 1)−1

where of course CorrMB(Xi, Xj) = 0. The negative correlation in FD statistics (due to the

Pauli exclusion principle) shows that a classical mixture representation will not hold, and

also suggests why no such derivation of them using classical particles has been done until

now. However, by exchangeability we may immediately apply Theorem 4.1.1 to see that

IPFD is indeed a (necessarily signed) mixture, that is linear combination, of multinomial

distributions.
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Two remarks are in order. First, it is unnecessary to repeat all of the hard work

present in the above papers to assert the mixture representation; it is a natural corollary

of the study of this chapter. Secondly, an obvious (and perhaps tempting) question would

concern the physical interpretation of the mixing generalized random variable and its signed

distribution. Let it be clear that no such explanation is made or implied here. In all of the

above mentioned papers there was no attempt to understand the physical significance of

the mixture; throughout the goal was to find some way to mathematically base the modern,

quantum particles on the more familiar classical particles of Maxwell-Boltzmann.

It seems that in the 1980’s an asymmetry was created in the literature by Bach and

his colleagues since such a basis was possible only for Bose-Einstein statistics, while the

status of Fermi-Dirac statistics remained unresolved. It is hoped that the theorem of this

chapter and the representation of this section may help to restore the symmetry to this

long standing problem.
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[29] Haag, J. (1928). Sur un problème général de probabilitès et ses diverses applications.

Proceedings of the International Congress of Mathematicians, Toronto, 1924, 659-674.

[30] Hewitt, E. and L.J. Savage (1955). Symmetric Measures on Cartesian Products. Trans.

Amer. Math. Soc. 80 470-501.



86

[31] Jaynes, E. (1986). Some Applications and Extensions of the De Finetti Representation

Theorem. Bayesian Inference and Decision Techniques. Elsevier. 31-42.

[32] Johnson, K., S. Kotz, and A. Kemp (1993). Univariate Discrete Distributions 2nd ed.

Wiley, New York.

[33] Kendall, D.K. (1967). On Finite and Infinite Sequences of Exchangeable Events. Studia

Sci. Math. Hung. 2 319-327.

[34] Kingman, J. (1978). Uses of Exchangeability. Ann. Prob. 6 183-197.

[35] Le Cam, L. (1953). On some Asymptotic Properties of Maximum Likelihood Estimates

and Related Bayes Estimates. Univ. Calif. Publ. Statist. 1 277-300.

[36] Lukacs, E. (1970). Characteristic Functions. Griffin, London.

[37] Mückenheim, W. (1986). A Review of Extended Probabilities. Phys. Rep. 133 6 337-

401.

[38] O’Brien, G. and F. Steutel (1981). Divisibility Properties of Lebesgue Measure. Pro-

ceedings of Koninklijke Nederlandse Akademie Van Wetenschappen Series A 84 393-398.

[39] Ressel, P. (1985). de Finetti-type Theorems: an Analytical Approach. Ann. Prob. 13,

898-922.

[40] Robbins, H. (1955). A Remark on Stirling’s Formula. Amer. Math Monthly 62, 26-28.
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Appendix A

COMPLEX MEASURE THEORY

A.1 Signed and Complex Measures

Definition A.1.1. Let (Ω,A) be a measurable space. A signed measure on (Ω,A) is a

function ν : A → [−∞,∞] such that

1. ν(∅) = 0,

2. ν assumes at most one of the values ±∞,

3. if {Ej} is a sequence of disjoint sets in A, then ν (
⋃∞

1 Ej) =
∑∞

1 ν(Ej), where the

latter sum converges absolutely if ν (
⋃∞

1 Ej) is finite.

Thus every measure is a signed measure; for emphasis we will sometimes refer to

measures as positive measures. If ν is a signed measure on (Ω,A), a set E ∈ A is called

positive (resp. negative, null) for ν if ν(F ) ≥ 0 (resp. ν(F ) ≤ 0, ν(F ) = 0) for all F ∈ A

such that F ⊂ E.

Theorem A.1.1 (The Hahn Decomposition Theorem). If ν is a signed measure on

(Ω,A), there exist a positive set P and a negative set N for ν such that P ∪ N = Ω and

P ∩N = ∅. If P ′, N ′ is another such pair, then P4P ′ (= N4N ′) is null for ν.

We say that two signed measures µ and ν on (Ω,A) are mutually singular if there

exist E,F ∈ A such that E ∩ F = ∅, E ∪ F = Ω, E is null for µ, and F is null for ν.

Informally speaking, mutual singularity means that µ and ν “live on different sets”. We

express this relationship symbolically by writing µ ⊥ ν.

88
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Theorem A.1.2 (The Jordan Decomposition Theorem). If ν is a signed measure,

then there exist unique positive measures ν+ and ν− such that ν = ν+ − ν− and ν+ ⊥ ν−.

The measures ν+ and ν− are called the positive and negative variations of ν, and

ν = ν+− ν− is called the Jordan decomposition of ν. Furthermore, we define the total

variation of ν to be the measure |ν| defined by

|ν| = ν+ + ν−.

Integration with respect to a signed measure is defined in the obvious way. As usual,

for a positive measure µ we denote

L1(µ) = {f : Ω → C such that

∫
|f | dµ < ∞},

we set L1(ν) = L1(ν+) ∩ L1(ν−), and for f ∈ L1(ν) we define

∫
f dν =

∫
f dν+ −

∫
f dν−.

Proposition A.1.1. Let ν, ν1, and ν2 be signed measures on (Ω,A).

1. L1(ν) = L1(|ν|).

2. If f ∈ L1(ν),
∣∣∫ f dν

∣∣ ≤ ∫ |f | d|ν|.

3. If E ∈ A, |ν|(E) = sup{| ∫
E

f dν| : |f | ≤ 1}.

4. If E ∈ A, |ν|(E) = sup{∑n
1 |ν(Ej)| : n ∈ IN, E1, . . . , En are disjoint, and

⋃n
1 Ej = E}

5. If ν1 and ν2 both omit the value ±∞, then |ν1 + ν2| ≤ |ν1|+ |ν2|.
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Definition A.1.2. Let (Ω,A) be a measurable space. A complex measure on (Ω,A) is

a map ν : A → C such that

1. ν(∅) = 0,

2. if {Ej} is a sequence of disjoint sets in A, then ν (
⋃∞

1 Ej) =
∑∞

1 ν(Ej), where the

series converges absolutely.

In particular, infinite values are not allowed, so a positive measure is a complex measure

if and only if it is finite. If ν is a complex measure, we write νr and νi for the real and

imaginary parts of ν. Thus νr and νi are signed measures that do not assume the values

±∞; hence they are finite and so the range of ν is a bounded subset of C.

The notions developed so far generalize easily to the complex case. For example, we

define L1(ν) = L1(νr)∩L1(νi), and for f ∈ L1(ν) we define
∫

f dν =
∫

f dνr + i
∫

f dνi. If

µ and ν are complex measures we say ν ⊥ µ if νa ⊥ µb for a, b = r, i, and if λ is a positive

measure we say ν ¿ λ if νr ¿ λ and νi ¿ λ.

Theorem A.1.3 (The Lebesgue-Radon-Nikodym Theorem). If ν is a complex mea-

sure and µ is a σ-finite positive measure on (Ω,A), there exist a complex measure λ and

an f ∈ L1(µ) such that λ ⊥ µ and dν = dλ + f dµ. If also λ′ ⊥ µ and dν = dλ′ + f ′ dµ,

then λ′ = λ and f ′ = f µ− a.e.

The total variation of a complex measure ν is the positive measure |ν| determined

by the property that if dν = f dµ where µ is a positive measure, then d|ν| = |f | dµ.

Proposition A.1.2. Let ν, ν1, and ν2 be complex measures on (Ω,A).

1. |ν(E)| ≤ |ν|(E) for all E ∈ A.
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2. ν ¿ |ν|, and dν/d|ν| has modulus 1 |ν|-a.s.

3. L1(ν) = L1(|ν|), and if f ∈ L1(ν), then
∣∣∫ f dν

∣∣ ≤ ∫ |f | d|ν|.

4. If E ∈ A, |ν|(E) = sup{
∣∣∫

E
f dν

∣∣ : |f | ≤ 1}.

5. |ν1 + ν2| ≤ |ν1|+ |ν2|.

A.2 Topological and Lp Spaces, Inequalities, and Complex Radon Measures

Let Ω be a locally compact Hausdorff (LCH) space and let BΩ denote the Borel σ-algebra

on Ω, that is, the σ-algebra generated by the open sets of Ω.

We introduce some terminology. If X is any set, we denote by B(X, IR) (resp. B(X,C))

the space of all bounded real- (resp. complex-) valued functions on X. If Ω is any topological

space we have also the spaces C(Ω, IR) and C(Ω,C) of continuous functions on Ω and we

define

BC(Ω, F ) = B(Ω, F ) ∩ C(Ω, F ) (F = IR or C).

In speaking of complex-valued functions we shall usually omit the C and simply write

B(Ω), C(Ω), and BC(Ω).

If f ∈ B(Ω), we define the uniform norm of f to be

‖f‖u = sup{|f(ω)| : ω ∈ Ω}.

It is not hard to show that if Ω is a topological space then BC(Ω) is a closed subspace of

B(Ω) in the metric induced by the uniform norm; in particular, BC(Ω) is complete.

For f ∈ C(Ω), the support of f , denoted supp(f), is the smallest closed set outside

of which f vanishes, that is, the closure of {ω : f(ω) 6= 0}. If supp(f) is compact, we say
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that f is compactly supported, and we define

Cc(Ω) = {f ∈ C(Ω) : supp(f) is compact}.

Moreover, if f ∈ C(Ω), we say that f vanishes at infinity if for every ε > 0 the set

{ω : |f(ω)| ≥ ε} is compact, and we define

C0(Ω) = {f ∈ C(Ω) : f vanishes at infinity}.

Clearly Cc(Ω) ⊂ C0(Ω). In fact, C0(Ω) ⊂ BC(Ω), because for f ∈ C0(Ω) the image of the

set {ω : |f(ω)| ≥ ε} is compact, and |f | < ε on its complement.

With respect to Lp spaces, if f is a measurable function on the measure space (Ω, B, µ)

and 0 < p < ∞, we define

‖f‖p = (IE|f |p)1/p ,

and we define

Lp(Ω,B, µ) = {f : Ω → C such that ‖f‖p < ∞}.

Theorem A.2.1 (Hölder’s Inequality). Suppose 1 < p < ∞ and p−1 + q−1 = 1. Then

for the complex measure ν on IR2 and any two random variables X and Y ,

IE|ν||XY | ≤ (
IE|ν||X|p

)1/p (
IE|ν||Y |q

)1/q
.

In particular, if X ∈ Lp and Y ∈ Lq then XY ∈ L1, and equality holds iff

α|X|p = β|Y |q a.s., for some constants α, β with αβ 6= 0.

Remark. We will have occasion to use Hölder’s Inequality written in a slightly different

form: for X ∼ ν and measurable functions f and g,

|IE||f(X)g(X)| ≤ (|IE||f(X)|p)1/p (|IE||g(X)|q)1/q .
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Theorem A.2.2 (Minkowski’s Inequality). If 1 ≤ p < ∞ and X, Y ∈ Lp(|ν|) then

(
IE|ν||X + Y |p)1/p ≤ (

IE|ν||X|p
)1/p

+
(
IE|ν||Y |p

)1/p
.

Proposition A.2.1 (Folland). If the complex measure ν satisfies |ν|(IR) < ∞, then for

0 < p < q ≤ ∞ we have |IE||X|p ≤ (|IE||X|q)p/q · |ν|(IR)1−p/q.

Proof. If q = ∞, this is obvious:

|IE||X|p ≤ ‖X‖p
∞ ·

∫
d|ν| = ‖X‖p

∞ · |ν|(IR).

If q < ∞ we use the second Hölder’s Inequality A.2.1 above, with conjugate exponents q/p

and q/(q − p):

|IE||X|p =

∫
|x|p · 1 d|ν|(x) ≤ ‖|X|p‖q/p‖1‖q/(q−p) = (|IE||X|q)p/q · |ν|(IR)(q−p)/q.

Theorem A.2.3 (Chebychev’s Inequality). If X ∼ ν satisfies |IE||X|p < ∞, 0 < p <

∞, then for any ε > 0,

|IP| (|X| > ε) ≤ |IE||X|p
εp

.

Let µ be a Borel measure on Ω and E a Borel subset of Ω. The measure µ is called

outer regular on E if

µ(E) = inf{µ(U) : U ⊃ E, U open }

and inner regular on E if

µ(E) = sup{µ(K) : K ⊂ E, K compact }.

A Borel measure that is outer and inner regular on all Borel sets is called regular.
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Definition A.2.1. A Radon measure on Ω is a Borel measure that is finite on all

compact sets, outer regular on all Borel sets, and inner regular on all open sets.

We next list some properties of Radon measures.

Proposition A.2.2 (Folland). Suppose that µ is a finite Radon measure on (Ω,B) and

E ∈ B is a Borel set.

1. µ is regular.

2. For every ε > 0 there exist an open U and a closed F with F ⊂ E ⊂ U and µ(U\F ) <

ε;

3. There exist an Fσ set A and a Gδ set B such that A ⊂ E ⊂ B and µ(B\A) = 0.

4. Cc is dense in Lp(µ) for 1 ≤ p < ∞.

Theorem A.2.4 (Lusin’s Theorem). Suppose that µ is a Radon measure on Ω and

f : Ω → C is a measurable function that vanishes outside a set of finite measure. Then for

any ε > 0 there exists φ ∈ Cc(Ω) such that φ = f except on a set of measure < ε. If f is

bounded, φ can be taken to satisfy ‖φ‖u ≤ ‖f‖u.

Definition A.2.2. A signed Radon measure is a signed Borel measure whose positive

and negative variations are Radon, and a complex Radon measure is a complex Borel

measure whose real and imaginary parts are Radon. We denote the space of complex Radon

measures on Ω by M(Ω), and for ν ∈ M(Ω) we define

‖ν‖ = |ν|(Ω),

where |ν| is the total variation of ν.
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Remark. On a second countable LCH space every complex Borel measure is Radon. This

follows since complex measures are bounded.

Proposition A.2.3 (Folland). If ν is a complex Borel measure, then ν is Radon iff |ν|

is Radon. Moreover, M(Ω) is a vector space and ν → ‖ν‖ is a norm on it.

Notation. By M+ and M± we mean the subspaces of positive measures and signed measures

on Ω, respectively, with the inherited total variation norm.

Lemma A.2.1 (Scheffé’s Lemma). For complex probability distributions µ and ν, with

respective densities f, g ∈ L1, we have ‖f − g‖1 = 2‖µ− ν‖.

Proof. Given A ∈ B(IR),
∫

(f − g) = 1− 1 = 0 implies

0 =

∫

A

(f − g) +

∫

Ac

(f − g), which implies

∣∣∣∣
∫

A

(f − g)

∣∣∣∣ =

∣∣∣∣
∫

Ac

(f − g)

∣∣∣∣ .

Then

2|µ(A)− ν(A)| = 2

∣∣∣∣
∫

A

(f − g)

∣∣∣∣ =

∣∣∣∣
∫

A

(f − g)

∣∣∣∣ +

∣∣∣∣
∫

Ac

(f − g)

∣∣∣∣

≤
∫

A

|f − g|+
∫

Ac

|f − g| = ‖f − g‖1,

in which case

2‖µ− ν‖ = sup
A∈B(R)

|µ(A)− ν(A)| ≤ ‖f − g‖1.

But there exists a set for which equality holds: let A = {f ≥ g}. Then

2|µ(A)− ν(A)| =

∣∣∣∣
∫

A

(f − g)

∣∣∣∣ +

∣∣∣∣
∫

Ac

(f − g)

∣∣∣∣

=

∫

A

|f − g|+
∫

Ac

|g − f | = ‖f − g‖1,

and we are finished.
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A.3 Properties of FST’s and L1 Convolution

It is sometimes possible to go in reverse and invert the Fourier transform. If f ∈ L1(m),

we define

f∨(x) = f̂(−x) =

∫
e2πitxf(t) dm(t).

Theorem A.3.1 (The Fourier Inversion Theorem). If f ∈ L1 and f̂ ∈ L1 then f

agrees almost everywhere with a continuous function f0 and (f̂)∨ = (̂f∨) = f0.

Notation. We denote by C∞ the space of all functions on IR whose derivatives of order k

exist and are continuous for any k and by S the Schwartz space consisting of those C∞

functions which, together with all their derivatives, vanish at infinity faster than any power

of |x|. More precisely, for any k,N ∈ IN we define

‖f‖(N,k) = sup
x∈IR

(1 + |x|)N |f (k)(x)|;

then

S = { f ∈ C∞ : ‖f‖(N,k) < ∞ for all k, N }.

Proposition A.3.1 (Folland). F is an isomorphism of S onto itself.

Theorem A.3.2 (Parseval’s Identity). If f, g ∈ L1(m) then

∫
f(x)g(x) dm(x) =

∫
f̂(t)ĝ(t) dm(t).

Proposition A.3.2 (Folland). The subspace C∞
c (and hence also S) is dense in

Lp (1 ≤ p < ∞) and in C0.

Definition A.3.1. Let f and g be measurable functions on IR. The convolution of f and

g is the function f ∗ g defined by

f ∗ g(x) =

∫
f(x− y)g(y) dy,
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for all x such that the integral exists.

Various conditions may be imposed on f and g to guarantee that f ∗ g is defined at

least almost everywhere, for example if f is bounded and compactly supported then g may

be any locally integrable function.

In order to generalize the concept of convolution it is necessary to use products of

complex measures on product spaces, which is facilitated by Radon-Nikodym derivatives.

Namely, if µ, ν ∈ M(IR), we define µ× ν ∈ M(IR× IR) by

d(µ× ν)(x, y) =
dµ

d|µ|(x)
dν

d|ν|(y) d(|µ| × |ν|)(x, y).

The last theorem is a recollection of the not so well known Leibnitz’s Rule, an appli-

cation of the Fundamental Theorem of Calculus and the Chain Rule.

Theorem A.3.3 (Leibnitz’s Rule). If f(x, θ), a(θ), and b(θ) are differentiable with

respect to θ, then

d

dθ

∫ b(θ)

a(θ)

f(x, θ)dx = f(b(θ), θ)
d

dθ
b(θ)− f(a(θ), θ)

d

dθ
a(θ) +

∫ b(θ)

a(θ)

∂

∂θ
f(x, θ)dx
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Appendix B

MODES OF CONVERGENCE

In what follows we will be very much concerned with the asymptotic behavior of certain

sequences of random variables; at the same time we will also be mindful of particular classes

of random variables and we would wish that these classes would be nice, in some sense.

There are many ways in which signed measures may converge, and the question quickly

narrows to the problem of finding a suitable convergence type that induces a topology with

favorable properties.

In order to find the appropriate sense of convergence we are led to consider the following

well known result:

Theorem B.1 (The Riesz Representation Theorem). Let Ω be an LCH space, and

for ν ∈ M(Ω) and f ∈ C0(Ω) let Iν(f) =
∫

fdν. Then the map ν → Iν is an isometric

isomorphism from M(Ω) to C0(Ω)∗.

The weak* topology on M(Ω) = C0(Ω), in which να → ν if and only if
∫

fdνα →
∫

fdν

for all f ∈ C0(Ω), is of considerable importance in what follows; it is called the vague

topology, and we denote it by να
v−→ ν.

We continue by giving a useful criterion for vague convergence.

Proposition B.1 (Folland). Suppose ν1, ν2, . . . , ν ∈ M(IR), and let Fn(x) = νn(−∞, x]

and F (x) = ν(−∞, x].

1. If supn ‖νn‖ < ∞ and Fn(x) → F (x) for every x at which F is continuous, then

νn
v−→ ν.

98
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2. If νn
v−→ ν, then supn ‖νn‖ < ∞. If, in addition, the νn’s are positive, then Fn(x) →

F (x) at every x at which F is continuous.

Proof. (a) Since F is continuous except at countably many points, Fn → F a.e. with

respect to Lebesgue measure. Also, ‖Fn‖u ≤ ‖νn‖ ≤ C, so the Fn’s are uniformly bounded.

If f is continuously differentiable and has compact support then integration by parts and

the Dominated Convergence Theorem yield

∫
f dνn =

∫
f ′(x)Fn(x) dx →

∫
f ′(x)F (x) dx =

∫
f dν.

But the set of all such f ’s is dense in C0(IR) (Proposition A.3.2), so
∫

f dνn →
∫

f dν for

all f ∈ C0(IR) by Lemma B.1. That is, νn
v−→ ν.

(b) If νn
v−→ ν, then supn ‖νn‖ < ∞ by the Principle of Uniform Boundedness.

Suppose that νn ≥ 0, and hence ν ≥ 0, and that F is continuous at x = a. If f ∈ Cc(IR)

is the function that is 1 on [−N, a], is 0 on (−∞,−N − ε] and [a + ε,∞), and linear in

between, we have

Fn(a)− Fn(−N) = νn(−N, a] ≤
∫

f dνn →
∫

f dν ≤ F (a + ε)− F (−N − ε).

But as N →∞, Fn(−N) and F (−N − ε) tend to zero, so

lim sup
n→∞

Fn(a) ≤ F (a + ε).

Similarly, by considering the function that is 1 on [−N +ε, a−ε], 0 on (−∞, N ] and [a,∞),

and linear in between, we see that

lim inf
n→∞

Fn(a) ≥ F (a− ε).

Since ε is arbitrary and F is continuous at a, we have Fn(a) → F (a), as desired.
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Proposition B.2. If νn
v−→ ν in M(Ω, B), then |ν|(O) ≤ lim infn |νn|(O) for any open set

O ∈ B.

Proof. Let O be an open set and ε > 0. Then since for any E ∈ B,

|ν|(E) = sup{
∣∣∣∣
∫

E

f dν

∣∣∣∣ : |f | ≤ 1},

there exists f such that
∣∣∫

E
f dν

∣∣ ≥ |ν|(O) − ε/2, and Lusin’s Theorem A.2.4 guarantees

the existence of φ ∈ Cc with support contained in O and satisfying |φ| ≤ |f | ≤ 1 such that

φ = f except possibly on a set of variation measure < ε/2. Then

∣∣∣∣
∫

φ dν

∣∣∣∣ =

∣∣∣∣
∫

f dν −
∫

(f − φ) dν

∣∣∣∣

≥
∣∣∣∣
∫

f dν

∣∣∣∣−
∣∣∣∣
∫

(f − φ) dν

∣∣∣∣

≥ |ν|(O)− ε/2−
∫
|(f − φ)| dν

> |ν|(O)− ε.

And vague convergence allows us to write

∣∣∣∣
∫

φ dν

∣∣∣∣ = lim
n

∣∣∣∣
∫

φ dνn

∣∣∣∣ ≤ lim inf
n

|νn|(O).

Since ε can be made arbitrarily small we are finished.

Proposition B.3. If {νn} ⊂ M(Ω), νn −→ ν vaguely, and ‖νn‖ → ‖ν‖, then
∫

fdνn →
∫

fdν for every f ∈ BC(Ω). Moreover, the hypothesis ‖νn‖ → ‖ν‖ cannot be omitted.

Proposition B.4 (Folland). Suppose that ν, ν1, ν2, . . . ∈ M(IR). If ‖νk‖ ≤ C < ∞ for

all k and ν̂n → ν̂ pointwise, then νn
v−→ ν. Conversely, if νn

v−→ ν and ‖νn‖ → ‖ν‖, then

ν̂n → ν̂ pointwise.

Proof. If f ∈ S, then choose g ∈ S such that ĝ = f (which is possible by Proposition A.3.1),

and then by the Fourier Inversion Theorem A.3.1,

∫
f dνk =

∫ ∫
g(y)e−2πiyx dy dνk(x) =

∫
g(y)ν̂k(y) dy.
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Since g ∈ L1 and ‖ν̂k‖u ≤ C, the Dominated Convergence Theorem implies that
∫

f dνk →
∫

f dν. But S is dense in C0(IR) (Proposition A.3.2), so Lemma B.1 shows that
∫

f dνk →
∫

f dν for all f ∈ C0(IR), that is, νn
v−→ ν.

The converse follows immediately from Proposition B.3.

It turns out that vague convergence is not strong enough for our purposes; however,

the type of convergence discussed in Proposition B.3, in which να → ν if and only if

∫
fdνα → ∫

fdν for all f ∈ BC(Ω), is of primary importance in what follows and is

termed weak convergence. We denote it by να ⇒ ν. The weak topology is stronger

than the vague topology and turns out to have more useful properties that we are going to

explore.

In order to discuss weak convergence fruitfully we need the following definition.

Definition B.1. A family A of complex Borel measures on a topological space is said to

be tight if for all ε > 0 there exists a compact set K such that |ν|(Kc) < ε for all ν ∈ A.

Proposition B.5. If there exists δ > 0 such that supn |IE| |Xn|δ = C < ∞, then {νn} is

tight.

Proof. This is an easy consequence of Chebychev’s Inequality A.2.3: Let

pn,M = |IP| (|Xn| > M) .

Then

pn,M ≤ |IE||Xn|δ
M δ

≤ C

M δ
−→ 0, as M →∞.

For ε > 0, choose Mε > (C/ε)1/δ. Then supn pn,Mε < ε, and the compact set [−Mε,Mε]

suffices in the definition.
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Proposition B.6. Let {Xn} and {Yn} be independent. If {Xn} and {Yn} are bounded and

tight, then so is {Xn + Yn}.

Proof. Suppose Xn ∼ µn and Yn ∼ νn with ‖µn‖, ‖νn‖ ≤ C < ∞. Let ε > 0. We notice

that for any M > 0 the event

{|Xn + Yn| > M} implies {|Xn| > M/2 or |Yn| > M/2}.

That is, by letting f = 1{|Xn+Yn| > M}, h1 = 1{|Xn| > M/2}, and h2 = 1{|Yn| > M/2},

we may say f ≤ h1 + h2. Now let M be so large that |µn|([−M/2,M/2]c) < ε/2C and

|νn|([−M/2,M/2]c) < ε/2C for all n. Denote g = d|µn ∗νn|/d(µn ∗νn), and remember that

Proposition A.1.2 implies |g| = 1 a.e.. We are ready to compute

|µn ∗ νn|([−M,M ]c) = |IP|(|Xn + Yn| > M)

=

∫
f d|µn ∗ νn| =

∫
f g d(µn ∗ νn)

≤
∫
|f | |g| d(|µn| × |νn|) =

∫
f d(|µn| × |νn|)

≤
∫

(h1 + h2) d(|µn| × |νn|)

= |IP|(|Xn| > M/2) · ‖νn‖+ ‖µn‖ · |IP|(|Yn| > M/2)

< ε/2 + ε/2 = ε.

Therefore, {Xn +Yn} is tight and boundedness follows directly from Proposition 1.2.1.

The usefulness of the concept of tightness is well displayed by the following theorem,

as generalized by Varadarajan [45].

Theorem B.2 (Prohorov’s Theorem). A family A of Borel probability measures on a

separable complete metric space is relatively compact in the weak topology if and only if A

is tight.
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When discussing weak convergence in classical Probability theory one quickly encoun-

ters Lévy’s Continuity Theorem for characteristic functions which states that weak conver-

gence of a sequence of probability distributions is equivalent to the pointwise convergence

of the corresponding sequence of characteristic functions, provided the limit is continuous

at zero.

In the complex case such a convenient statement is simply not true; the extra in-

gredients needed are supplied by Prohorov’s Theorem and the result is the Continuity

Theorem for Complex Measures, as developed by Báez-Duarte [5]:

Theorem B.3 (Báez-Duarte). νn ⇒ ν if and only if ν̂n → ν̂ pointwise and {νn} is

bounded and tight.

Theorem B.4 (Báez-Duarte). If ν̂n → g pointwise and {νn} is bounded and tight, then

there is a complex measure ν ∈ M such that ν̂ = g and νn ⇒ ν.

Proof of Theorem B.3. If νn ⇒ ν then clearly ν̂n → ν̂. The Principle of Uniform Bound-

edness guarantees that {νn} is bounded, and tightness follows from Prohorov’s Theorem.

Thus the only if part is done, and the if part of the theorem is a particular case of Theo-

rem B.4.

Proof of Theorem B.4. Suppose that ν̂n → g pointwise and {νn} is bounded and tight.

For any subsequence (n(1)), Prohorov’s Theorem gives a sub-subsequence (n(2)) such that

νn(2)
⇒ ν for some ν ∈ M . Then ν̂n(2)

→ ν̂, so that g = ν̂. The uniqueness of the Fourier-

Stieltjes transform implies that the limiting measure ν obtained in the previous fashion

does not depend on the subsequence (n(1)). From this we conclude that νn ⇒ ν.

The two preceding theorems give criteria which are, in practice, somewhat inconvenient
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to check. Next we give a theorem which has stronger hypotheses and yet will prove to be

more useful in the context of our later discussions.

Theorem B.5 (Báez-Duarte). If ν̂n → ν̂ pointwise and lim sup ‖νn‖ ≤ ‖ν‖, then νn ⇒ ν.

Furthermore, in this case also |νn| ⇒ |ν|, and, in particular, ‖νn‖ → ‖ν‖.

Remark. ν±n ⇒ ν±, respectively, also follow.

Proof. We begin by establishing that νn
v−→ ν. To prove it for φ ∈ S take ψ ∈ S such that

ψ̂ = φ (use Proposition A.3.1). Since |ψν̂n| ≤ |ψ| supn ‖νn‖, Parseval’s Identity A.3.2 and

Dominated Convergence imply

∫
φ dνn =

∫
ψν̂n dx →

∫
ψν̂ dx =

∫
φ dν.

Since S is uniformly dense in Cc, Lemma B.1 gives the vague convergence.

The convergence of the total variations follows immediately by taking O = Ω in Propo-

sition B.2. Now, for ε > 0 we find an open set O with compact closure such that |ν|(Oc) < ε,

which, on account of Proposition B.2, implies

‖ν‖ − ε < |ν|(O) ≤ lim inf
n

|νn|(O) = lim inf
n

(‖νn‖ − |νn|(Oc))

= ‖ν‖ − lim sup
n

|νn|(Oc),

that is, lim supn |νn|(Oc) < ε. Tightness of {νn} follows, and Theorem B.3 then yields

νn ⇒ ν.

It remains to show that |νn| ⇒ |ν|. First discard the case ν = 0, for then

∣∣∣∣
∫

φ d|νn|
∣∣∣∣ ≤ ‖φ‖∞‖νn‖ → 0,

by convergence of the total variations.
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Next we show that

|νn|(O) → |ν|(O), (O open, |ν|(∂O) = 0). (B.0.1)

To accomplish this write the disjoint union Ω = O ∪ ∂O ∪U . The assumption |ν|(∂O) = 0

and Proposition B.2 imply

‖ν‖ = |ν|(O) + |ν|(U) ≤ lim inf
n

|νn|(O) + lim inf
n

|νn|(U)

≤ lim inf
n

|νn|(O ∪ U)

≤ ‖ν‖.

Therefore

‖ν‖ = lim inf
n

|νn|(O) + lim inf
n

|νn|(U) (B.0.2)

so that

‖ν‖ − lim inf
n

|νn|(O) = lim inf
n

|νn|(U)

= lim inf
n

(‖νn‖ − |νn|(O ∪ ∂O))

≤ ‖ν‖ − lim sup
n

|νn|(O).

Thus lim |νn|(O) exists for every open set with |ν|(∂O) = 0, and lim |νn|(O) ≥ |ν|(O).

As this applies to both O and U in equation (B.0.2), we see that it is impossible to have

lim |νn|(O) > |ν|(O). Therefore equation (B.0.1) has been established.

To conclude weak convergence of the v-measures we employ a standard argument

included here for the sake of completeness. Choose f ∈ BC(Ω) and ε > 0. Let C =

supn ‖νn‖. Since the possible atoms of |ν| ◦ f−1 form a countable set it is possible to

subdivide the bounded range of f by means of points a1 < a2 < · · · < am such that

max(ak+1−ak) < ε/(2C) and the open sets Ak = {f < ak} have |ν|(∂Ak) = 0. Then for the
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simple function s =
∑

ak1Ak
one has ‖f − s‖∞ < ε/(2C). It is clear from equation (B.0.1)

that

ωn =

∣∣∣∣
∫

s d|νn| −
∫

s d|ν|
∣∣∣∣ → 0,

so that

∣∣∣∣
∫

f d|νn| −
∫

f d|ν|
∣∣∣∣ ≤

∣∣∣∣
∫

(f − s) d|νn|
∣∣∣∣ + ωn +

∣∣∣∣
∫

(s− f) d|ν|
∣∣∣∣

≤ 2‖f − s‖∞ C + ωn

≤ ε + ωn.

We have thus arrived at |νn| ⇒ |ν|.

It is very useful to have weak convergence of the v-measures, as the following theorem

shows.

Theorem B.6. If |νn| ⇒ |ν| and for some δ > 0, supn |IE| |Xn|δ = M < ∞, then

|IE| |X|δ ≤ M, and for each p < δ, lim
n→∞

|IE| |Xn|p = |IE| |X|p < ∞.

Remark. If p above is a positive integer then we may replace |Xn|p and |X|p with Xp
n and

Xp, respectively.

Proof. We prove the remark since the assertion of the theorem is similar. For A > 0 define

fA on IR as follows:

fA(x) =





xp, if |x| ≤ A,

Ap, if x > A,

(−A)p if x < −A.

Then fA ∈ BC and by weak convergence

∫
fA d|νn| →

∫
fA d|ν|.
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Next we have

∫
|fA(x)− xp| d|νn|(x) ≤

∫

|x|>A

|x|p d|νn|(x)

≤ Ap |IP|(|Xn| > A)

≤ Ap

( |IE||Xn|δ
Aδ

)

≤ M

Aδ−p
.

The last term does not depend on n, and converges to zero as A → ∞. It follows that as

A →∞,
∫

fA d|νn| converges uniformly in n to
∫

xp d|ν|. Hence by a standard theorem on

the inversion of repeated limits we have

∫
xp d|ν| = lim

A→∞

∫
fA d|ν| = lim

A→∞
lim

n→∞

∫
fA d|νn|

= lim
n→∞

lim
A→∞

∫
fA d|νn| = lim

n→∞

∫
xp d|νn|.

It remains to show the first assertion of the theorem. Similar to the above for A > 0 we

define gA on IR as follows:

gA(x) =





|x|δ, if |x| ≤ A,

Aδ, if |x| > A.

Then gA ∈ BC and increases monotonically to |x|δ as A →∞. But then

∫
|x|δ d|ν| = lim

A→∞

∫
gA d|ν|, by the Monotone Convergence Theorem,

= lim
A→∞

lim
n→∞

∫
gA d|νn|, by weak convergence,

≤ lim
A→∞

M, since
∫

gA d|νn| ≤ M for each n,

= M.
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Lemma B.1. Let F ⊂ G be normed spaces of measurable functions, and let the complex

measures ν, {νn} ⊂ M(Ω) be bounded. Suppose
∫

f dνn →
∫

f dν for all f ∈ F and further

suppose that F is dense in G. Then
∫

g dνn →
∫

g dν for all g ∈ G.

Proof. Let C = supn ‖νn‖. Given g ∈ G and ε > 0, choose f ∈ F such that ‖f−g‖ < ε/(3C).

If n is large enough so that
∣∣∫ f dνn −

∫
f dν

∣∣ < ε/3, we have

∣∣∣∣
∫

g dνn −
∫

g dν

∣∣∣∣ ≤
∣∣∣∣
∫

g dνn −
∫

f dνn

∣∣∣∣ +

∣∣∣∣
∫

f dνn −
∫

f dν

∣∣∣∣

+

∣∣∣∣
∫

f dν −
∫

g dν

∣∣∣∣

≤ 2C‖f − g‖+ ε/3 < ε,

so that
∫

g dνn →
∫

g dν.




